Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/85/1/10.1063/1.4862656
1.
1. A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. McIntyre, K. Boyer, and C. K. Rhodes, J. Opt. Soc. Am. B 4, 595 (1987).
http://dx.doi.org/10.1364/JOSAB.4.000595
2.
2. M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, J. Phys. B: At., Mol. Opt. Phys. 21, L31 (1988).
http://dx.doi.org/10.1088/0953-4075/21/3/001
3.
3. L. Gallmann, C. Cirelli, and U. Keller, Annu. Rev. Phys. Chem. 63, 447 (2012).
http://dx.doi.org/10.1146/annurev-physchem-032511-143702
4.
4. F. Calegari, F. Ferrari, M. Lucchini, M. Negro, C. Vozzi, S. Stagira, G. Sansone, and M. Nisoli, “Principles and Applications of Attosecond Technology” in Advances in Atomic, Molecular, and Optical Physics, edited by E. Arimondo, P. R. Berman, and C. C. Lin (Academic Press, San Diego, 2011), Vol. 60, pp. 371413.
5.
5. F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.163
6.
6. P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
http://dx.doi.org/10.1038/nphys620
7.
7. A. H. Zewail, J. Phys. Chem. A 104, 5660 (2000).
http://dx.doi.org/10.1021/jp001460h
8.
8. P. Antoine, A. L'Huillier, and M. Lewenstein, Phys. Rev. Lett. 77, 1234 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.1234
9.
9. P. Paul, E. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. Muller, and P. Agostini, Science 292, 1689 (2001).
http://dx.doi.org/10.1126/science.1059413
10.
10. F. Calegari, M. Lucchini, M. Negro, C. Vozzi, L. Poletto, O. Svelto, S. D. Silvestri, G. Sansone, S. Stagira, and M. Nisoli, J. Phys. B: At., Mol. Opt. Phys. 45, 074002 (2012).
http://dx.doi.org/10.1088/0953-4075/45/7/074002
11.
11. T. Shimizu, T. Okino, K. Furusawa, H. Hasegawa, Y. Nabekawa, K. Yamanouchi, and K. Midorikawa, Phys. Rev. A 75, 033817 (2007).
http://dx.doi.org/10.1103/PhysRevA.75.033817
12.
12. P. Tzallas, E. Skantzakis, L. A. A. Nikolopoulos, G. D. Tsakiris, and D. Charalambidis, Nat. Phys. 7, 781 (2011).
http://dx.doi.org/10.1038/nphys2033
13.
13. E. J. Takahashi, P. Lan, O. D. Mücke, Y. Nabekawa, and K. Midorikawa, Nat. Commun. 4, 2691 (2013).
http://dx.doi.org/10.1038/ncomms3691
14.
14. J. Itatani, F. Quéré, G. L. Yudin, M. Y. Ivanov, F. Krausz, and P. B. Corkum, Phys. Rev. Lett. 88, 173903 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.173903
15.
15. L. Gallmann, J. Herrmann, R. Locher, M. Sabbar, A. Ludwig, M. Lucchini, and U. Keller, Mol. Phys. 111, 2243 (2013).
http://dx.doi.org/10.1080/00268976.2013.799298
16.
16. P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Drner, H. G. Muller, M. Bttiker, and U. Keller, Science 322, 1525 (2008).
http://dx.doi.org/10.1126/science.1163439
17.
17. A. N. Pfeiffer, C. Cirelli, M. Smolarski, D. Dimitrovski, M. Abu-samha, L. B. Madsen, and U. Keller, Nat. Phys. 8, 76 (2012).
http://dx.doi.org/10.1038/nphys2125
18.
18. A. Landsman, M. Weger, J. Maurer, R. Boge, A. Ludwig, S. Heuser, C. Cirelli, L. Gallmann, and U. Keller, preprint arXiv:1301.2766 [physics.atom-ph] (2013).
19.
19. A. N. Pfeiffer, C. Cirelli, M. Smolarski, R. Dorner, and U. Keller, Nat. Phys. 7, 428 (2011).
http://dx.doi.org/10.1038/nphys1946
20.
20. K. Klünder, J. M. Dahlström, M. Gisselbrecht, T. Fordell, M. Swoboda, D. Guénot, P. Johnsson, J. Caillat, J. Mauritsson, A. Maquet, R. Taïeb, and A. L'Huillier, Phys. Rev. Lett. 106, 143002 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.143002
21.
21. Y. Mairesse and F. Quéré, Phys. Rev. A 71, 011401 (2005).
http://dx.doi.org/10.1103/PhysRevA.71.011401
22.
22. G. Sansone, F. Kelkensberg, J. Pérez-Torres, F. Morales, M. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lépine, J. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L'Huillier, M. Ivanov, M. Nisoli, F. Martín, and M. Vrakking, Nature (London) 465, 763 (2010).
http://dx.doi.org/10.1038/nature09084
23.
23. A. Cavalieri, N. Muller, T. Uphues, V. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blumel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, Nature (London) 449, 1029 (2007).
http://dx.doi.org/10.1038/nature06229
24.
24. M. Fieß, M. Schultze, E. Goulielmakis, B. Dennhardt, J. Gagnon, M. Hofstetter, R. Kienberger, and F. Krausz, Rev. Sci. Instrum. 81, 093103 (2010).
http://dx.doi.org/10.1063/1.3475689
25.
25. E. Magerl, S. Neppl, A. L. Cavalieri, E. M. Bothschafter, M. Stanislawski, T. Uphues, M. Hofstetter, U. Kleineberg, J. V. Barth, D. Menzel, F. Krausz, R. Ernstorfer, R. Kienberger, and P. Feulner, Rev. Sci. Instrum. 82, 063104 (2011).
http://dx.doi.org/10.1063/1.3596564
26.
26. M. Hentschel, R. Kienberger, C. Spielmann, G. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, Nature (London) 414, 509 (2001).
http://dx.doi.org/10.1038/35107000
27.
27. F. Frank, C. Arrell, T. Witting, W. A. Okell, J. McKenna, J. S. Robinson, C. A. Haworth, D. Austin, H. Teng, I. A. Walmsley, J. P. Marangos, and J. W. G. Tisch, Rev. Sci. Instrum. 83, 071101 (2012).
http://dx.doi.org/10.1063/1.4731658
28.
28. I. J. Sola, E. Mevel, L. Elouga, E. Constant, V. Strelkov, L. Poletto, P. Villoresi, E. Benedetti, J.-P. Caumes, S. Stagira, C. Vozzi, G. Sansone, and M. Nisoli, Nat. Phys. 2, 319 (2006).
http://dx.doi.org/10.1038/nphys281
29.
29. H. Telle, G. Steinmeyer, A. Dunlop, J. Stenger, D. Sutter, and U. Keller, Appl. Phys. B: Lasers Opt. 69, 327 (1999).
http://dx.doi.org/10.1007/s003400050813
30.
30. C. Hauri, W. Kornelis, F. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, Appl. Phys. B 79, 673 (2004).
http://dx.doi.org/10.1007/s00340-004-1650-z
31.
31. C. Hauri, A. Guandalini, P. Eckle, W. Kornelis, J. Biegert, and U. Keller, Opt. Express 13, 7541 (2005).
http://dx.doi.org/10.1364/OPEX.13.007541
32.
32. M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
http://dx.doi.org/10.1063/1.116609
33.
33. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, Science 314, 443 (2006).
http://dx.doi.org/10.1126/science.1132838
34.
34. E. Goulielmakis, Z. Loh, A. Wirth, R. Santra, N. Rohringer, V. Yakovlev, S. Zherebtsov, T. Pfeifer, A. Azzeer, M. Kling, S. Leone, and F. Krausz, Nature (London) 466, 739 (2010).
http://dx.doi.org/10.1038/nature09212
35.
35. M. Lucchini, J. Herrmann, A. Ludwig, R. Locher, M. Sabbar, L. Gallmann, and U. Keller, New J. Phys. 15, 103010 (2013).
http://dx.doi.org/10.1088/1367-2630/15/10/103010
36.
36. J. Herrmann, M. Weger, R. Locher, M. Sabbar, P. Rivière, U. Saalmann, J.-M. Rost, L. Gallmann, and U. Keller, Phys. Rev. A 88, 043843 (2013).
http://dx.doi.org/10.1103/PhysRevA.88.043843
37.
37. M. Holler, F. Schapper, L. Gallmann, and U. Keller, Phys. Rev. Lett. 106, 123601 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.123601
38.
38. H. Muller, Appl. Phys. B 74, s17 (2002).
http://dx.doi.org/10.1007/s00340-002-0894-8
39.
39. O. Tcherbakoff, E. Mével, D. Descamps, J. Plumridge, and E. Constant, Phys. Rev. A 68, 043804 (2003).
http://dx.doi.org/10.1103/PhysRevA.68.043804
40.
40. V. Strelkov, A. Zaïr, O. Tcherbakoff, R. López-Martens, E. Cormier, E. Mével, and E. Constant, J. Phys. B: At., Mol. Opt. Phys. 38, L161 (2005).
http://dx.doi.org/10.1088/0953-4075/38/10/L05
41.
41. D. Kane, IEEE J. Quantum Electron. 35, 421 (1999).
http://dx.doi.org/10.1109/3.753647
42.
42. K. DeLong, D. Fittinghoff, and R. Trebino, IEEE J. Quantum Electron. 32, 1253 (1996).
http://dx.doi.org/10.1109/3.517026
43.
43. R. López-Martens, K. Varjú, P. Johnsson, J. Mauritsson, Y. Mairesse, P. Salières, M. B. Gaarde, K. J. Schafer, A. Persson, S. Svanberg, C.-G. Wahlström, and A. L'Huillier, Phys. Rev. Lett. 94, 033001 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.033001
44.
44. J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pepin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, Nature (London) 432, 867 (2004).
http://dx.doi.org/10.1038/nature03183
45.
45. S. Haessler, J. Caillat, W. Boutu, C. Giovanetti-Teixeira, T. Ruchon, T. Auguste, Z. Diveki, P. Breger, A. Maquet, B. Carré, R. Taïeb, and P. Salières, Nat. Phys. 6, 200 (2010).
http://dx.doi.org/10.1038/nphys1511
46.
46. C. Vozzi, M. Negro, F. Calegari, G. Sansone, M. Nisoli, S. De Silvestri, and S. Stagira, Nat. Phys. 7, 822 (2011).
http://dx.doi.org/10.1038/nphys2029
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/1/10.1063/1.4862656
Loading
/content/aip/journal/rsi/85/1/10.1063/1.4862656
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/85/1/10.1063/1.4862656
2014-01-24
2016-09-26

Abstract

We present our attoline which is a versatile attosecond beamline at the Ultrafast Laser Physics Group at ETH Zurich for attosecond spectroscopy in a variety of targets. High-harmonic generation (HHG) in noble gases with an infrared (IR) driving field is employed to generate pulses in the extreme ultraviolet (XUV) spectral regime for XUV-IR cross-correlation measurements. The IR pulse driving the HHG and the pulse involved in the measurements are used in a non-collinear set-up that gives independent access to the different beams. Single attosecond pulses are generated with the polarization gating technique and temporally characterized with attosecond streaking. This attoline contains two target chambers that can be operated simultaneously. A toroidal mirror relay-images the focus from the first chamber into the second one. In the first interaction region a dedicated double-target allows for a simple change between photoelectron/photoion measurements with a time-of-flight spectrometer and transient absorption experiments. Any end station can occupy the second interaction chamber. A surface analysis chamber containing a hemispherical electron analyzer was employed to demonstrate successful operation. Simultaneous RABBITT measurements in two argon jets were recorded for this purpose.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/85/1/1.4862656.html;jsessionid=S1zhkvU0J-gaK0Sebr3U6Yd_.x-aip-live-03?itemId=/content/aip/journal/rsi/85/1/10.1063/1.4862656&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/85/1/10.1063/1.4862656&pageURL=http://scitation.aip.org/content/aip/journal/rsi/85/1/10.1063/1.4862656'
Right1,Right2,Right3,