Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. Binning, C. F. Quate, and Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).
2. A. L. Wiesenhorn, P. K. Hansma, T. R. Albrecht, and C. F. Quate, Appl. Phys. Lett. 54, 2651 (1989).
3. C. M. Mate, G. M. McClelland, R. Erlandsson, and S. Chiang, Phys. Rev. Lett. 59, 1942 (1987).
4. G. Meyer and N. M. Amer, Appl. Phys. Lett. 53, 1045 (1988).
5. J. L. Hutter and J. Bechoeffer, Rev. Sci. Instrum. 64, 1868 (1993).
6. J. E. Sader, J. W. M. Chon, and P. Mulvaney, Rev. Sci. Instrum. 70, 3967 (1999).
7. C. T. Gibson, G. S. Watson, and S. Myhra, Nanotechnology 7, 259 (1996).
8. J. P. Cleveland, S. Manne, D. Bocek, and P. K. Hansma, Rev. Sci. Instrum. 64, 403 (1993).
9. M. Munz, J. Phys. D: Appl. Phys. 43, 063001 (2010).
10. C. P. Green, H. Lioe, J. P. Cleveland, R. Proksch, P. Mulvaney, and J. E. Sader, Rev. Sci. Instrum. 75, 1988 (2004).
11. K. Wagner, P. Cheng, and D. Vezenov, Langmuir 27, 4635 (2011).
12. T. Pettersson, N. Nordgren, M. W. Rutland, and A. Feiler, Rev. Sci. Instrum. 78, 093702 (2007).
13. E. Tocha, J. Song, H. Schönherr, and G. J. Vansco, Langmuir 23, 7078 (2007).
14. D. F. Ogletree, R. W. Carpick, and M. Salmeron, Rev. Sci. Instrum. 67, 3298 (1996).
15. R. G. Cain, M. G. Reitsma, S. Biggs, and N. W. Page, Rev. Sci. Instrum. 72, 3304 (2001).
16. R. J. Cannara, M. Elgin, and R. W. Carpick, Rev. Sci. Instrum. 77, 053701 (2006).
17. S. S. Barkley, Z. Deng, R. S. Gates, M. G. Reitsma, and R. J. Cannara, Rev. Sci. Instrum. 83, 023707 (2012).
18. E. V. Anderson, S. Chakraborty, T. Esformes, D. Eggiman, C. DeGraf, K. M. Stevens, D. Lin, and N. A. Burnham, ACS Appl. Mater. Interfaces 3, 3256 (2011).
19. L. Huang and C. Su, Ultramicroscopy 100, 277 (2004).
20. P. Maivald, H.-J. Butt, S. A. C. Gould, C. B. Prater, B. Drake, J. A. Gurley, V. B. Elings, and P. K. Hansma, Nanotechnology 2, 103 (1991).
21. M. J. Higgins, R. Proksch, J. E. Sader, M. Polcik, S. McEndoo, J. P. Cleveland, and S. P. Jarvis, Rev. Sci. Instrum. 77, 013701 (2006).
22. P. Attard, T. Pettersson, and M. W. Rutland, Rev. Sci. Instrum. 77, 116110 (2006).
23. S. M. Cook, T. E. Schäffer, K. M. Chynoweth, M. Wigton, R. W. Simmonds, and K. M. Wang, Nanotechnology 17, 2135 (2006).
24. T. Pirzer and T. Hugel, Rev. Sci. Instrum. 80, 035110 (2009).
25.We have measured this to be the case for the JPK NanoWizard® 3 AFM with Vortis™ Advanced SPM Controller used here (signals measured from the Signal Access Module built into the controller), an Asylum Research MFP-3D™ with high bandwidth photodiode option (signals measured at the BNC output from the AFM head) and for Veeco (now Bruker) Multimode® and Dimension® AFMs using NanoScope® IIIa and IV controllers (signal measured using a Signal Access Module placed between the AFM and the controller).
26. J. E. Sader, J. Sanelli, B. D. Hughes, J. P. Monty, and E. J. Bieske, Rev. Sci. Instrum. 82, 095104 (2011).
27. C. P. Green and J. E. Sader, J. Appl. Phys. 92, 6262 (2002).
28. H.-J. Butt and M. Jaschke, Nanotechnology 6, 1 (1995).
29. S. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1951), p. 275.
30. M. Reinstaedtler, U. Rabe, V. Scherer, J. A. Turner, and W. Arnold, Surf. Sci. 532–535, 1152 (2003).
31. R. Proksch, T. E. Schäffer, J. P. Cleveland, R. C. Callahan, and M. B. Viani, Nanotechnology 15, 1344 (2005).
32. D. Nečas and P. Klapetek, Cent. Eur. J. Phys. 10, 181 (2012).
33. J. E. Sader and C. P. Green, Rev. Sci. Instrum. 75, 878 (2004).
34. J. E. Sader, J. A. Sanelli, B. D. Adamson, J. P. Monty, X. Wei, S. A. Crawford, J. R. Friend, I. Marusic, P. Mulvaney, and E. J. Bieske, Rev. Sci. Instrum. 83, 103705 (2012).
35. M. A. Lantz, S. J. O’Shea, M. E. Welland, and K. L. Johnson, Phys. Rev. B 55, 10776 (1997).
36. A. Khan, J. Phillip, and P. Hess, J. Appl. Phys. 95, 1667 (2004).
37. T. E. Schäffer and P. K. Hansma, J. Appl. Phys. 84, 4661 (1998).
38. Y. Song and B. Bhushan, J. Appl. Phys. 99, 094911 (2006)
39. C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, and C. M. Lieber, Science 265, 2071 (1994).

Data & Media loading...


Article metrics loading...



Calibration of lateral forces and displacements has been a long standing problem in lateral force microscopies. Recently, it was shown by Wagner that the thermal noise spectrum of the first torsional mode may be used to calibrate the deflection sensitivity of the detector. This method is quick, non-destructive and may be performed in air or liquid. Here we make a full quantitative comparison of the lateral inverse optical lever sensitivity obtained by the lateral thermal noise method and the shape independent method developed by Anderson We find that the thermal method provides accurate results for a wide variety of rectangular cantilevers, provided that the geometry of the cantilever is suitable for torsional stiffness calibration by the torsional Sader method, in-plane bending of the cantilever may be eliminated or accounted for and that any scaling of the lateral deflection signal between the measurement of the lateral thermal noise and the measurement of the lateral deflection is eliminated or corrected for. We also demonstrate that the thermal method may be used to characterize the linearity of the detector signal as a function of position, and find a deviation of less than 8% for the instrument used.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd