Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/85/11/10.1063/1.4901932
1.
1. S. Kumar, R. Gupta, and S. Banerjee, Phys. Fluids 10, 437 (1998).
http://dx.doi.org/10.1063/1.869573
2.
2. K. V. Horoshenkov, A. Nichols, S. J. Tait, and G. A. Maximov, J. Geophys. Res.–Earth 118, 1864, doi:10.1002/jgrf.20117 (2013).
http://dx.doi.org/10.1002/jgrf.20117
3.
3. A. Nichols, Ph.D. thesis, University of Bradford, 2014.
4.
4. K. V. Horoshenkov and A. Nichols, “Methods and apparatus for detection of fluid interface fluctuations,” U.S. patent application 14,002,569 (19 December 2013).
5.
5. S. P. Walstead and G. B. Deane, J. Acoust. Soc. Am. 133, 2597 (2013).
http://dx.doi.org/10.1121/1.4795791
6.
6. F. G. Bass and I. M. Fuks, Wave Scattering from Statistically Rough Surfaces (Pergamon, Oxford, 1979), p. 186.
7.
7. R. D. Kodis, IEEE T. Antenn. Propag. 14, 77 (1966).
http://dx.doi.org/10.1109/TAP.1966.1138626
8.
8. M. S. Longuet-Higgins, J. Opt. Soc. Am. 50, 845 (1960).
http://dx.doi.org/10.1364/JOSA.50.000845
9.
9. M. S. Longuet-Higgins, J. Opt. Soc. Am. 50, 851 (1960).
http://dx.doi.org/10.1364/JOSA.50.000851
10.
10. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics 1: Elements of Random Process Theory (Springer-Verlag, New York, 1987), p. 108.
11.
11. P. M. Morse and K. Uno Ingard, Theoretical Acoustics (McGraw-Hill, New York, 1968), p. 381.
12.
12. M. V. Fedoryuk, Comput. Math. Math. Phys. 2, 145 (1963).
http://dx.doi.org/10.1016/0041-5553(63)90278-7
13.
13. D. E. Barrick, IEEE T. Antenn. Propag. 16, 449 (1968).
http://dx.doi.org/10.1109/TAP.1968.1139220
14.
14. B. Lautrup, Physics of Continuous Matter, Second Edition: Exotic and Everyday Phenomena in the Macroscopic World (CRC Press, Boca Raton, 2011), p. 81.
15.
15. J. R. Chaplina and P. Teigen, J. Fluid. Struct. 18, 271 (2003).
http://dx.doi.org/10.1016/j.jfluidstructs.2003.07.009
16.
16.See http://www.mathworks.co.uk/help/optim/ug/lsqnonlin.html for optimization algorithm; assessed on 19 March 2014.
17.
17. M. A. Isakovich, J. Exp. Theor. Phys. 23, 305 (1952) (in Russian).
18.
18. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, New York, 1978), p. 504.
19.
19. A. G. Roy, T. Buffin-Belanger, H. Lamarre, and A. Kirkbride, J. Fluid Mech. 500, 1 (2004).
http://dx.doi.org/10.1017/S0022112003006396
20.
20. A. Nichols, S. Tait, K. Horoshenkov, and S. Shepherd, Flow Meas. Instrum. 34, 118 (2013).
http://dx.doi.org/10.1016/j.flowmeasinst.2013.09.006
21.
21. L. B. Marsh and D. B. Heckman, “Open channel flowmeter utilizing surface velocity and lookdown level devices,” U.S. patent 5,811,688 (22 September 1998).
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/11/10.1063/1.4901932
Loading
/content/aip/journal/rsi/85/11/10.1063/1.4901932
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/85/11/10.1063/1.4901932
2014-11-24
2016-12-08

Abstract

In this paper, the directivity of the airborne sound field scattered by a dynamically rough free flow surface in a flume is used to determine the mean roughness height for six hydraulic conditions in which the uniform depth of the turbulent flow. The nonlinear curve fitting method is used to minimize the error between the predicted directivity and directivity data. The data fitting algorithm is based on the averaged solution for the scattered sound pressure as a function of angle which is derived through the Kirchhoff integral and its approximations. This solution takes into account the directivity of the acoustic source. For the adopted source and receiver geometry and acoustic frequency it is shown that the contribution from the stationary phase point (single specular point on the rough surface) yields similar results to those which can be obtained through the full Kirchhoff's integral. The accuracy in the inverted mean roughness height is comparable to that achieved with an array of conductive wave probes. This method enables non-invasive estimation of the flow Reynolds number and uniform flow depth.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/85/11/1.4901932.html;jsessionid=Wp0TL1x2AKJ4X3NHdCVGW4Az.x-aip-live-02?itemId=/content/aip/journal/rsi/85/11/10.1063/1.4901932&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/85/11/10.1063/1.4901932&pageURL=http://scitation.aip.org/content/aip/journal/rsi/85/11/10.1063/1.4901932'
Right1,Right2,Right3,