Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. H. Bilderback, P. Elleaume, and E. Weckert, “Review of third and next generation synchrotron light sources,” J. Phys. B 38, S773S797 (2005).
2. D. A. Reis, M. F. DeCamp, P. H. Bucksbaum, R. Clarke, E. Dufresne, M. Hertlein, R. Merlin, R. Falcone, H. Kapteyn, M. M. Murnane, J. Larsson, T. Missalla, and J. S. Wark, “Probing impulsive strain propagation with x-ray pulses,” Phys. Rev. Lett. 86, 30723075 (2001).
3. Y. Sheu, S. Lee, J. Wahlstrand, D. Walko, E. Landahl, D. Arms, M. Reason, R. Goldman, and D. Reis, “Thermal transport in a semiconductor heterostructure measured by time-resolved x-ray diffraction,” Phys. Rev. B 78, 045317 (2008).
4. M. Highland, B. Dundrum, Y. K. Koh, R. Averback, D. G. Cahill, V. Elarde, J. Coleman, D. Walko, and E. Landahl, “Ballistic-phonon heat conduction at the nanoscale as revealed by time-resolved x-ray diffraction and time-domain thermoreflectance,” Phys. Rev. B 76, 075337 (2007).
5. M. Trigo, M. Sheu, D. Arms, J. Chen, S. Ghlmire, R. Goldman, E. Landahl, R. Merlin, E. Peterson, M. Reason, and D. Reis, “Probing unfolded acoustic phonons with x rays,” Phys. Rev. B 101, 025505 (2008).
6. S. Lee, A. Cavalleri, D. Fritz, M. Swan, R. Hegde, M. Reason, R. Goldman, and D. Reis, “Generation and propagation of a picosecond acoustic pulse at a buried interface: Time-resolved x-ray diffraction measurements,” Phys. Rev. Lett. 95, 246104 (2005).
7. B. Adams, M. DeCamp, E. Dufresne, and D. Reis, “Picosecond laser-pump, x-ray probe spectroscopy of GaAs,” Rev. Sci. Instrum. 73, 4150 (2002).
8. M. Wulff, A. Plech, L. Eybert, R. Randler, F. Schotte, and P. Anfinrud, “The realization of sub-nanosecond pump and probe experiments at the ESRF. European Synchrotron Radiation Facility,” Faraday Discuss. 122, 1326 (2003).
9. R. Schoenlein, S. Chattopadhyay, H. Chong, T. Glover, P. Heinman, C. Shank, A. Zholents, and M. Zolotorev, “Generation of femtosecond pulses of synchrotron radiation,” Science 287, 2237 (2000).
10. A. Grigoriev, D.-H. Do, P. G. Evans, B. Adams, E. Landahl, and E. M. Dufresne, “Synchronizing fast electrically driven phenomena with synchrotron x-ray probes,” Rev. Sci. Instrum. 78, 023105 (2007).
11. M. F. Decamp, D. A. Reis, D. M. Fritz, P. H. Bucksbaum, E. M. Dufresne, and R. Clark, “X-ray synchrotron studies of ultrafast crystalline dynamics,” J. Synchrotron Radiat. 12, 177192 (2005).
12. S. H. Nam, H.-S. Kang, I. S. Ko, and M. Cho, “Upgrade of Pohang light source (PLS-II) and challenge to PAL XFEL,” Synchrotron Radiat. News 26, 2431 (2013).
13. J.-H. Han, H.-S. Kang, and I. Ko, “Status of the PAL-XFEL project,” in Proceedings of the IPAC2012, New Orleans, LA, USA (2010), pp. 17351737.
14. M. Harmand, R. Coffee, M. R. Bionta, M. Chollet, D. French, D. Zhu, D. M. Fritz, H. T. Lemke, N. Medvedev, B. Ziaja, S. Toleikis, and M. Cammarata, “Achieving few-femtosecond time-sorting at hard x-ray free-electron lasers,” Nat. Photon. 7, 215218 (2013).
15. M. Beye, O. Krupin, G. Hays, A. H. Reid, D. Rupp, S. de Jong, S. Lee, W.-S. Lee, Y.-D. Chuang, R. Coffee, J. P. Cryan, A. F. J. M. Glownia, M. R. Holmes, A. R. Fry, W. E. White, C. Bostedt, A. O. Scherz, H. A. Durr, and W. F. Schlotter, “X-ray pulse preserving single-shot optical cross-correlation method for improved experimental temporal resolution,” Appl. Phys. Lett. 100, 121108 (2012).

Data & Media loading...


Article metrics loading...



The ability to synchronize a femtosecond laser to x-ray pulses is crucial for performing ultrafast time-resolved x-ray scattering experiments at synchrotrons. Conventionally, the task has been achieved by locking a harmonic frequency of the laser oscillator to the storage ring master radio-frequency (RF). However, when the frequency mismatch between the two sources cannot be compensated by small adjustments to the laser cavity length, synchronization to a harmonic frequency requires modifying the optical components of the laser system. We demonstrate a novel synchronization scheme, which is a flexible alternative for synchronizing these two sources operating at arbitrarily different frequencies. First, we find the greatest common divisor (GCD) of the two frequencies that is still within the limited tuning range of the laser cavity length. The GCD is generated by dividing down from the storage ring RF, and is separately multiplied up to provide a feedback signal for synchronizing the laser cavity. Unique to our scheme, the GCD also serves as a harmonic RF source for the laser amplifier such that only laser oscillator pulses at fixed integer multiples of the storage ring RF are selected for amplification and delivery to experiments. Our method is implemented at the Photon Test Facility beamline of Pohang Light Source where timing-jitter less than 4 ps (r.m.s.) is measured using a new shot-to-shot method.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd