Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. I. De Vlaminck and C. Dekker, Annu. Rev. Biophys. 41, 453 (2012).
2. K. C. Neuman and A. Nagy, Nat. Methods. 5, 491 (2008).
3. N. Ribeck and O. A. Saleh, Rev. Sci. Instrum. 79, 094301 (2008).
4. D. A. Koster, A. Crut, S. Shuman, M.-A. Bjornsti, and N. H. Dekker, Cell 142, 519 (2010).
5. D. Dulin, J. Lipfert, M. C. Moolman, and N. H. Dekker, Nat. Rev. Genet. 14, 9 (2012).
6. E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, Nature (London) 438, 460 (2005).
7. M. Manosas, A. Meglio, M. M. Spiering, F. Ding, S. J. Benkovic, F. X. Barre, O. A. Saleh, J. F. Allemand, D. Bensimon, and V. Croquette, Methods Enzymol. 475, 297 (2010).
8. D. A. Koster, V. Croquette, C. Dekker, S. Shuman, and N. H. Dekker, Nature (London) 434, 671 (2005).
9. T. R. Strick, J. F. Allemand, D. Bensimon, A. Bensimon, and V. Croquette, Science 271, 1835 (1996).
10. T. Strick, J.-F. Allemand, V. Croquette, and D. Bensimon, Prog. Biophys. Mol. Biol. 74, 115 (2000).
11. T. Lionnet, J. F. Allemand, A. Revyakin, T. R. Strick, O. A. Saleh, D. Bensimon, and V. Croquette, Cold Spring Harb Protoc. 2012, 133 (2012).
12. M. Kruithof, F. Chien, M. de Jager, and J. van Noort, Biophys. J. 94, 2343 (2008).
13. I. De Vlaminck, T. Henighan, M. T. van Loenhout, I. Pfeiffer, J. Huijts, J. W. Kerssemakers, A. J. Katan, A. van Langen-Suurling, E. van der Drift, C. Wyman, and C. Dekker, Nano Lett. 11, 5489 (2011).
14. J. Lipfert, J. W. Kerssemakers, T. Jager, and N. H. Dekker, Nat. Methods 7, 977 (2010).
15. F. Mosconi, J. F. Allemand, and V. Croquette, Rev. Sci. Instrum. 82, 034302 (2011).
16. A. Celedon, I. M. Nodelman, B. Wildt, R. Dewan, P. Searson, D. Wirtz, G. D. Bowman, and S. X. Sun, Nano Lett. 9, 1720 (2009).
17. J. Lipfert, M. Wiggin, J. W. Kerssemakers, F. Pedaci, and N. H. Dekker, Nat. Commun. 2, 439 (2011).
18. X. J. Janssen, J. Lipfert, T. Jager, R. Daudey, J. Beekman, and N. H. Dekker, Nano Lett. 12, 3634 (2012).
19. J. Lipfert, X. Hao, and N. H. Dekker, Biophys. J. 96, 5040 (2009).
20. K. C. Neuman, T. Lionnet, and J.-F. Allemand, Annu. Rev. Mater. Res. 37, 33 (2007).
21. A. J. te Velthuis, J. W. Kerssemakers, J. Lipfert, and N. H. Dekker, Biophys. J. 99, 1292 (2010).
22. J. Lipfert, J. J. Kerssemakers, M. Rojer, and N. H. Dekker, Rev. Sci. Instrum. 82, 103707 (2011).
23. J. P. Cnossen, D. Dulin, and N. H. Dekker, Rev. Sci. Instrum. 85, 103712 (2014).
24. M. T. van Loenhout, J. W. Kerssemakers, I. De Vlaminck, and C. Dekker, Biophys. J. 102, 2362 (2012).
25. C. Gosse and V. Croquette, Biophys. J. 82, 3314 (2002).
26. J. Lipfert, D. A. Koster, I. D. Vilfan, S. Hage, and N. H. Dekker, Methods Mol. Biol. 582, 71 (2009).
27. T. Strick, Ph.D. thesis, The University of Paris VI, 1999.
28. C. G. Baumann, S. B. Smith, V. A. Bloomfield, and C. Bustamante, Proc. Natl. Acad. Sci. U.S.A. 94, 6185 (1997).
29. J. R. Wenner, M. C. Williams, I. Rouzina, and V. A. Bloomfield, Biophys. J. 82, 3160 (2002).
30. M. van Oene, L. Dickinson, F. Pedaci, M. Köber, D. Dulin, J. Kerssemakers, J. Lipfert, and N. H. Dekker, “The torque on superparamagnetic beads in magnetic fields” (unpublished).
31. D. Klaue and R. Seidel, Phys. Rev. Lett. 102, 028302 (2009).
32. W. P. Wong and K. Halvorsen, Opt. Express 14, 12517 (2006).
33. B. M. Lansdorp and O. A. Saleh, Rev. Sci. Instrum. 83, 025115 (2012).
34. D. W. Allan, Proc. IEEE 54, 221 (1966).
35. I. De Vlaminck, T. Henighan, M. T. van Loenhout, D. R. Burnham, and C. Dekker, PLoS One 7, e41432 (2012).
36. C. Bouchiat, M. D. Wang, J. Allemand, T. Strick, S. M. Block, and V. Croquette, Biophys. J. 76, 409 (1999).
37. C. Bustamante, Z. Bryant, and S. B. Smith, Nature (London) 421, 423 (2003).
38. C. G. Baumann, V. A. Bloomfield, S. B. Smith, C. Bustamante, M. D. Wang, and S. M. Block, Biophys. J. 78, 1965 (2000).
39. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, Biophys. J. 72, 1335 (1997).
40. H. Chen, H. Fu, X. Zhu, P. Cong, F. Nakamura, and J. Yan, Biophys. J. 100, 517 (2011).
41. See supplementary material at for Figures S1-S9 and the Matlab codes used to compute forces from bead fluctuations. The latter information is also available at [Supplementary Material]

Data & Media loading...


Article metrics loading...



To study the behavior of biological macromolecules and enzymatic reactions under force, advances in single-molecule force spectroscopy have proven instrumental. Magnetic tweezers form one of the most powerful of these techniques, due to their overall simplicity, non-invasive character, potential for high throughput measurements, and large force range. Drawbacks of magnetic tweezers, however, are that accurate determination of the applied forces can be challenging for short biomolecules at high forces and very time-consuming for long tethers at low forces below ∼1 piconewton. Here, we address these drawbacks by presenting a calibration standard for magnetic tweezers consisting of measured forces for four magnet configurations. Each such configuration is calibrated for two commonly employed commercially available magnetic microspheres. We calculate forces in both time and spectral domains by analyzing bead fluctuations. The resulting calibration curves, validated through the use of different algorithms that yield close agreement in their determination of the applied forces, span a range from 100 piconewtons down to tens of femtonewtons. These generalized force calibrations will serve as a convenient resource for magnetic tweezers users and diminish variations between different experimental configurations or laboratories.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd