1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/85/2/10.1063/1.4864296
1.
1. M. M. Deshmukh, D. C. Ralph, M. Thomas, and J. Silcox, Appl. Phys. Lett. 75, 1631 (1999).
http://dx.doi.org/10.1063/1.124777
2.
2. A. R. Champagne, A. J. Couture, F. Kuemmeth, and D. C. Ralph, Appl. Phys. Lett. 82, 1111 (2003).
http://dx.doi.org/10.1063/1.1554483
3.
3. P. Zahl, M. Bammerlin, G. Meyer, and R. R. Schlittler, Rev. Sci. Instrum. 76, 023707 (2005).
http://dx.doi.org/10.1063/1.1852925
4.
4. R. Allenspach, A. Bischof, M. Stampanoni, D. Kerkmann, and D. Pescia, Appl. Phys. Lett. 60, 1908 (1992).
http://dx.doi.org/10.1063/1.107150
5.
5. K. Ono, H. Shimada, S.-i. Kobayashi, and Y. Ootuka, Jpn. J. Appl. Phys. 35, 2369 (1996).
http://dx.doi.org/10.1143/JJAP.35.2369
6.
6. J. Lee, B. Ju, J. Jang, Y. Yoon, and J. Kim, J. Mater. Sci. 42, 1026 (2007).
http://dx.doi.org/10.1007/s10853-006-1046-z
7.
7. K. Sidler, N. V. Cvetkovic, V. Savu, D. Tsamados, A. M. Ionescu, and J. Brugger, Sens. Actuators, A 162, 155 (2010).
http://dx.doi.org/10.1016/j.sna.2010.04.016
8.
8. J. A. Merlo and C. D. Frisbie, J. Phys. Chem. B 108, 19169 (2004).
http://dx.doi.org/10.1021/jp047023a
9.
9. T. Uchihashi, U. Ramsperger, T. Nakayama, and M. Aono, Jpn. J. Appl. Phys. 47, 1797 (2008).
http://dx.doi.org/10.1143/JJAP.47.1797
10.
10. L. Gross, R. R. Schlittler, G. Meyer, L. A. Fendt, F. Diederich, T. Glatzel, S. Kawai, S. Koch, and E. Meyer, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 28, C4D34 (2010).
http://dx.doi.org/10.1116/1.3292601
11.
11. V. Savu, S. Neuser, G. Villanueva, O. Vazquez-Mena, K. Sidler, and J. Brugger, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 28, 169 (2010).
http://dx.doi.org/10.1116/1.3292630
12.
12. L. Gross, R. R. Schlittler, G. Meyer, A. Vanhaverbeke, and R. Allenspach, Appl. Phys. Lett. 90, 093121 (2007).
http://dx.doi.org/10.1063/1.2710202
13.
13. L. Gross, R. R. Schlittler, G. Meyer, and R. Allenspach, Nanotechnology 21, 325301 (2010).
http://dx.doi.org/10.1088/0957-4484/21/32/325301
14.
14. O. Vazquez-Mena, G. Villanueva, V. Savu, K. Sidler, M. A. F. van den Boogaart, and J. Brugger, Nano Lett. 8, 3675 (2008).
http://dx.doi.org/10.1021/nl801778t
15.
15. C. Joachim, D. Martrou, M. Rezeq, C. Troadec, D. Jie, N. Chandrasekhar, and S. Gauthier, J. Phys.: Condens. Matter 22, 084025 (2010).
http://dx.doi.org/10.1088/0953-8984/22/8/084025
16.
16. E. Speets, P. te Riele, M. van den Boogaart, L. Doeswijk, B. Ravoo, G. Rijnders, J. Brugger, D. Reinhoudt, and D. Blank, Adv. Funct. Mater. 16, 1337 (2006).
http://dx.doi.org/10.1002/adfm.200500933
17.
17. Y. X. Zhou, A. T. Johnson, J. Hone, and W. F. Smith, Nano Lett. 3, 1371 (2003).
http://dx.doi.org/10.1021/nl034512y
18.
18. K. Sidler, O. Vazquez-Mena, V. Savu, G. Villanueva, M. van den Boogaart, and J. Brugger, Microelectron. Eng. 85, 1108 (2008).
http://dx.doi.org/10.1016/j.mee.2007.12.069
19.
19. G. Villanueva, O. Vazquez-Mena, M. van den Boogaart, K. Sidler, K. Pataky, V. Savu, and J. Brugger, Microelectron. Eng. 85, 1010 (2008).
http://dx.doi.org/10.1016/j.mee.2007.12.068
20.
20. S. W. Pang, M. W. Geis, W. D. Goodhue, N. N. Efremow, D. J. Ehrlich, R. B. Goodman, and J. N. Randall, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 6, 249 (1988).
http://dx.doi.org/10.1116/1.584016
21.
21. B. Grévin, M. Fakir, J. Hayton, M. Brun, R. Demadrille, and J. Faure-Vincent, Rev. Sci. Instrum. 82, 063706 (2011).
http://dx.doi.org/10.1063/1.3600898
22.
22. J. Brugger, J. Berenschot, S. Kuiper, W. Nijdam, B. Otter, and M. Elwenspoek, Microelectron. Eng. 53, 403 (2000).
http://dx.doi.org/10.1016/S0167-9317(00)00343-9
23.
23. C.-V. Cojocaru, C. Harnagea, F. Rosei, A. Pignolet, M. A. F. van den Boogaart, and J. Brugger, Appl. Phys. Lett. 86, 183107 (2005).
http://dx.doi.org/10.1063/1.1923764
24.
24. S. Egger, A. Ilie, Y. Fu, J. Chongsathien, D. Kang, and M. E. Welland, Nano Lett. 5, 15 (2005).
http://dx.doi.org/10.1021/nl0486822
25.
25. S. Egger, S. Higuchi, and T. Nakayama, J. Comb. Chem. 8, 275 (2006).
http://dx.doi.org/10.1021/cc0501662
26.
26. O. Vazquez-Mena, L. G. Villanueva, V. Savu, K. Sidler, P. Langlet, and J. Brugger, Nanotechnology 20, 415303 (2009).
http://dx.doi.org/10.1088/0957-4484/20/41/415303
27.
27. T. Tun, M. Lwin, H. Kim, N. Chandrasekhar, and C. Joachim, Nanotechnology 18, 335301 (2007).
http://dx.doi.org/10.1088/0957-4484/18/33/335301
28.
28. A. Linklater and J. Nogami, Nanotechnology 19, 285302 (2008).
http://dx.doi.org/10.1088/0957-4484/19/28/285302
29.
29.SPS-CreaTec GmbH, Magnusstr. 11, 12489 Berlin, Germany.
30.
30.Attocube systems AG, Königinstrasse 11a, 80539 München, Germany.
31.
31.Noliac A/S, Hejreskovvej 18, 3490 Kvistgaard, Denmark.
32.
32.Aquamarijn Micro Filtration BV, Berkelkade 11, NL 7201 JE Zutphen, The Netherlands.
33.
33.Quantifoil Micro Tools GmbH, In den Brückenäckern 4, 07751 Großlöbichau, Germany.
34.
34.At 5 K, the scan range of the scanner is approximately 500 nm, significantly less than the extension of the evaporated structure.
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/2/10.1063/1.4864296
Loading
/content/aip/journal/rsi/85/2/10.1063/1.4864296
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/85/2/10.1063/1.4864296
2014-02-12
2014-07-23

Abstract

We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/85/2/1.4864296.html;jsessionid=v8nka36tp672.x-aip-live-03?itemId=/content/aip/journal/rsi/85/2/10.1063/1.4864296&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/2/10.1063/1.4864296
10.1063/1.4864296
SEARCH_EXPAND_ITEM