1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Invited Article: Dielectric material characterization techniques and designs of high-Q resonators for applications from micro to millimeter-waves frequencies applicable at room and cryogenic temperatures
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/85/3/10.1063/1.4867461
1.
1.PETIT: ESA project—Compact high-performance filters for space application based on dielectric resonator technology, 2013, see http://telecom.esa.int/telecom/www/object/index.cfm?fobjectid=32336.
2.
2. G. Wibisono and T. Firmansyah, “Design of dielectric resonators oscillator for mobile WIMAX at 2.3 GHz with additional coupling lambda/4,” in IEEE Region 10 Conference on TENCON (IEEE, 2011), pp. 489493.
3.
3. H. Khalil, S. Bila, M. Aubourg, D. Baillargeat, S. Verdeyme, and F. Jouve, “Shape and topology optimization of microwave components,” in International Conference on Advances in Computational Tools for Engineering Applications, Zouk Mosbeh, Lebanon, 15–17 July 2009, pp. 275278.
4.
4. S. A. Vitusevich, K. Schieber, I. S. Ghosh, N. Klein, and M. Spinnler, “Design and characterization of an all-cryogenic low phase-noise sapphire K-band oscillator for satellite communication,” IEEE Trans. Microwave Theory Tech. 51(1), 163169 (2003).
http://dx.doi.org/10.1109/TMTT.2002.806931
5.
5. V. E. G. Walker, Ph.D. thesis, The University of Leeds, UK, 2003.
6.
6. V. Walker and I. C. Hunter, “Design of triple mode TE01 delta resonator transmission,” IEEE Microwave Wireless Compon. Lett. 12(6), 215217 (2002).
http://dx.doi.org/10.1109/LMWC.2002.1009999
7.
7. J. F. Liang and W. D. Blair, “High Q TEO, Mode DR filters for PCS wireless base stations,” IEEE Trans. Microwave Theory Tech. 46, 24932500 (1998).
http://dx.doi.org/10.1109/22.739239
8.
8. C. Rieck, P. Jarlemark, R. Emardson, and K. Jaldehag, “Precision of time transfer using GPS carrier phase,” in Proceedings of the 22nd EFTF, Toulouse, France, 23–25 April 2008.
9.
9. F. Droz, P. Mosset, G. Barmaverain, P. Rochat, Q. Wang, M. Belloni, L. Mattioni, F. Emma, and P. Waller, “The on-board Galileo clocks: Current status and performance,” in Proceedings of the 20th EFTF, Braunschweig, Germany, 27–30 March 2006.
10.
10. V. Giordano, S. Grop, B. Dubois, P-Y. Bourgeois, Y. Kersale, G. Haye, V. Dolgovskiy, N. Bulcalovic, G. Di Domenico, S. Schilt, J. Chauvin, D. Valat, and E. Rubiola, “New-generation of cryogenic sapphire microwave oscillators for space, metrology, and scientific applications,” Rev. Sci. Instrum. 83, 085113 (2012).
http://dx.doi.org/10.1063/1.4747456
11.
11. N. Klein, C. Zuccaro, U. Dähne, H. Schulz, N. Tellmann, R. Kutzner, A. G. Zaitsev, and R. Wördenweber, “Dielectric properties of rutile and its use in high temperature superconducting resonators,” J. Appl. Phys. 78(11), 66836686 (1995).
http://dx.doi.org/10.1063/1.360490
12.
12. J. M. Le Floch, M. E. Tobar, D. Cros, and J. Krupka, “low-loss materials for high Q-factor microwave Bragg reflector resonators,” Appl. Phys. Lett. 92, 032901 (2008).
http://dx.doi.org/10.1063/1.2828025
13.
13. G. Marra, D. Henderson, and M. Oxborrow, “Frequency stability and phase noise of a pair of X-band cryogenic sapphire oscillators,” Meas. Sci. Technol. 18, 12241228 (2007).
http://dx.doi.org/10.1088/0957-0233/18/5/008
14.
14. J. M. Le Floch, M. E. Tobar, D. Cros, and J. Krupka, “High Q-factor distributed Bragg reflector resonators with reflectors of arbitrary thickness,” IEEE Trans. Ultrason., Ferroelect., Frequency Control. 54, 26892695 (2007).
http://dx.doi.org/10.1109/TUFFC.2007.597
15.
15. J. M. Le Floch, M. E. Tobar, and D. Mouneyrac, “Discovery of Bragg confined hybrid modes with high Q factor in a hollow dielectric resonator,” Appl. Phys. Lett. 91, 142907 (2007).
http://dx.doi.org/10.1063/1.2794413
16.
16. J. Krupka, M. E. Tobar, J. G. Hartnett, D. Cros, and J. M. Le Floch, “Extremely high Q-factor dielectric resonators for millimeter wave applications,” IEEE Trans. Microwave Theory Tech. 53, 702712 (2005).
http://dx.doi.org/10.1109/TMTT.2004.840572
17.
17. J. Krupka, A. Cwikla, R. N. Clarke, and M. E. Tobar, “High Q-factor microwave Fabry-Perot resonator with distributed Bragg reflectors,” IEEE Trans. Ultrason., Ferroelect., Frequency Control. 52, 14431451 (2005).
http://dx.doi.org/10.1109/TUFFC.2005.1516015
18.
18. M. E. Tobar, J. M. Le Floch, D. Cros, and J. G. Hartnett, “Distributed Bragg reflector resonators with cylindrical symmetry and extremely high Q-factors,” IEEE Trans. Ultrason., Ferroelect., Frequency Control. 52, 1726 (2005).
http://dx.doi.org/10.1109/TUFFC.2005.1397346
19.
19. G. Cibiel, M. Regis, O. Llopis, A. Rennane, L. Bary, R. Plana, Y. Kersale, and V. Giordano, “Optimization of an ultra low-phase noise sapphire-SiGe HBT oscillator using nonlinear CAD,” IEEE Trans. Ultrason., Ferroelect., Frequency Control. 51(1), 3341 (2004).
http://dx.doi.org/10.1109/TUFFC.2004.1268465
20.
20. M. E. Tobar, J. M. Le Floch, D. Cros, J. Krupka, J. D. Anstie, and J. G. Hartnett, “Spherical Bragg reflector resonators,” IEEE Trans. Ultrason., Ferroelect., Frequency Control. 51, 10541059 (2004).
http://dx.doi.org/10.1109/TUFFC.2004.1334838
21.
21. A. G. Mann, C. Sheng, and A. N. Luiten, “Cryogenic sapphire oscillator with exceptionally high frequency stability,” IEEE Trans. Instrum. Meas. 50(2), 519521 (2001).
http://dx.doi.org/10.1109/19.918181
22.
22. C. A. Flory and H. L. Ko, “Microwave oscillators incorporating high performance distributed Bragg reflector resonators,” IEEE Trans. Ultrason., Ferroelect., Frequency Control. 45, 824829 (1998).
http://dx.doi.org/10.1109/58.677746
23.
23. R. Comte, S. Gendraud, and P. Guillon, “New concept for low loss microwave devices,” Electron. Lett. 30, 419420 (1994).
http://dx.doi.org/10.1049/el:19940300
24.
24. D. L. Creedon, K. Benmessai, M. E. Tobar, J. G. Hartnett, P-Y. Bourgeois, Y. Kersalé, J-M. Le Floch, and V. Giordano, “High-power solid-state sapphire whispering gallery mode maser,” IEEE Trans. Ultrason., Ferroelect., Frequency Control. 57(3), 641646 (2010).
http://dx.doi.org/10.1109/TUFFC.2010.1460
25.
25. D. G. Santiago, G. J. Dick, and A. Prata, “Mode control of cryogenic whispering-gallery mode sapphire dielectric-ring resonators,” IEEE Trans. Microwave Theory Tech. 42(1), 5255 (1994).
http://dx.doi.org/10.1109/22.265527
26.
26. M. M. Driscoll, J. T. Haynes, R. A. Jelen, R. W. Weinert, J. R. Gavaler, J. Talvacchio, G. R. Wagner, K. A. Zaki, and X.-P. Liang, “Cooled, ultrahigh Q, sapphire dielectric resonators for low-noise, microwave signal generation,” IEEE Trans. Ultrason., Ferroelect., Frequency Control. 39(3), 405411 (1992).
http://dx.doi.org/10.1109/58.143174
27.
27. J. G. Harnett, N. R. Nand, C. Wang, and J-M. Le Floch, “Cryogenic sapphire oscillator using a low-vibration design pulse-tube cryocooler: First results,” IEEE Trans. Ultrason., Ferroelect., Frequency Control. 57 (5), 10341038 (2010).
http://dx.doi.org/10.1109/TUFFC.2010.1515
28.
28. S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti et al., “Einstein, cold atom clocks and tests of fundamental theories,” J. Phys. B: At. Mol. Opt. Phys. 38, S449S468 (2005).
http://dx.doi.org/10.1088/0953-4075/38/9/002
29.
29. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425429 (2011).
http://dx.doi.org/10.1038/nphoton.2011.121
30.
30. P. L. Stanwix, M. E. Tobar, P. Wolf, M. Susli, C. R. Locke, E. N. Ivanov et al., “Test of lorentz invariance in electrodynamics using rotating cryogenic sapphire microwave oscillators,” Phys. Rev. Lett. 95, 040404 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.040404
31.
31. J. G. Hartnett, C. R. Locke, E. N. Ivanov, M. E. Tobar, and P. L. Stanwix, “Cryogenic sapphire oscillator with exceptionally high long-term frequency stability,” Appl. Phys. Lett. 89, 203513 (2006).
http://dx.doi.org/10.1063/1.2387969
32.
32. M. E. Tobar, E. N. Ivanov, P. L. Stanwix, J. M. Le Floch, and J. G. Hartnett, “Rotating odd-parity Lorentz invariance test in electrodynamics,” Phys. Rev. D 80(12), 125024 (2009).
http://dx.doi.org/10.1103/PhysRevD.80.125024
33.
33. J. M. Le Floch, R. Bara, J. G. Hartnett, M. E. Tobar, D. Mouneyrac, D. Passerieux, D. Cros, J. Krupka, P. Goy, and S. Caroopen, “Electromagnetic properties of polycrystalline diamond from 35K to room temperature and microwave to terahertz frequencies,” J. Appl. Phys. 109, 094103 (2011).
http://dx.doi.org/10.1063/1.3580903
34.
34. J. M. Le Floch, F. Houndonougbo, V. Madrangeas, D. Cros, M. Guilloux-Viry, and W. Peng, “Thin film materials characterisation using TE modes cavity,” J. Electromagn. Waves Appl. 23, 549559 (2009).
http://dx.doi.org/10.1163/156939309787612293
35.
35. B. Riddle, J. Baker-Jarvis, and M. D. Janezic, “Microwave characterization of semiconductors with a split-cylinder cavity,” Meas. Sci. Technol. 19, 115701 (2008).
http://dx.doi.org/10.1088/0957-0233/19/11/115701
36.
36. R. G. Geyer, B. Riddle, J. Krupka, and L. A. Boatner, “Microwave dielectric properties of single-crystal quantum paraelectrics KTaO3 and SrTiO3 at cryogenic temperatures,” J. Appl. Phys. 97, 104111 (2005).
http://dx.doi.org/10.1063/1.1905789
37.
37. T. Kolodiazhnyi, G. Annino, and T. Shimada, “Intrinsic limit of dielectric loss in several Ba(B1/3B2/3)O3 ceramics revealed by the whispering-gallery mode technique,” Appl. Phys. Lett. 87, 212908 (2005).
http://dx.doi.org/10.1063/1.2135379
38.
38. P. Koras, L. Usydus, and J. Krupka, “Automatic split post dielectric setup for measurements of substrates and thin conducting and ferroelectric films,” Ferroelectrics 434(1), 113120 (2012).
http://dx.doi.org/10.1080/00150193.2012.732779
39.
39. U. C. Hasar and O. Simsek, “A calibration-independent microwave method for position-insensitive and nonsingular dielectric measurements of solid materials,” J. Phys. D: Appl. Phys. 42, 075403 (2009).
http://dx.doi.org/10.1088/0022-3727/42/7/075403
40.
40. A. A. Barannik, N. T. Cherpak, Y. V. Propenko, Y. F. Filipov, E. N. Shaforost, and I. A. Shipilova, “Two-layered disc quasi-optical dielectric resonators: Electrodynamics and application perspectives for complex permittivity measurements of lossy liquids,” Meas. Sci. Technol. 18, 22312238 (2007).
http://dx.doi.org/10.1088/0957-0233/18/7/057
41.
41. A. A. Barannik, N. T. Cherpak, and D. E. Chuyko, “Q-factor measurement of quasi-optical dielectric resonators under conditions of the whispering gallery mode degeneration removal,” IEEE Trans. Instrum. Meas. 55(1), 7073 (2006).
http://dx.doi.org/10.1109/TIM.2005.861500
42.
42. T. W. Hänsch, “Passion for precision,” Ann. Phys. 15(9), 627652 (2006).
http://dx.doi.org/10.1002/andp.200610215
43.
43. M. D. Janezic, E. F. Kuester, and J. Baker-Jarvis, “Broadband complex permittivity measurements of dielectric substrates using split-cylinder resonator,” in IEEE MTT-S International Microwave Symposium, Fort Worth, Texas, 6–11 June 2004, pp. 18171820.
44.
44. N. Nakayama, A. Fukuura, and M. Nishimura, “Millimetre-wave measurement of complex permittivity using dielectric rod resonator excited by NRD-guide,” IEEE Trans. Microwave Theory Tech. 51(1), 170177 (2003).
http://dx.doi.org/10.1109/TMTT.2002.806932
45.
45. J. Molla, “A dielectric property measurement system for this samples based on a resonant cavity with 3 dielectric regions,” Meas. Sci. Technol. 13, 5058 (2002).
http://dx.doi.org/10.1088/0957-0233/13/1/307
46.
46. O. Piquet, D. Cros, S. Verdeyme, P. Guillon, and M. E. Tobar, “New design of high-Q sapphire resonator with distributed Bragg reflector,” in IEEE MTT-S International Microwave Symposium, Seattle, Washington, 2–7 June 2002.
47.
47. J. Krupka, K. Derzakowski, M. E. Tobar, J. Hartnett, and R. G. Geyerk, “Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures, Meas. Sci. Technol. 10, 387392 (1999).
http://dx.doi.org/10.1088/0957-0233/10/5/308
48.
48. E. K. Moser and K. Naishadham, “Dielectric resonators as microwave characterization tools,” IEEE Trans. Appl. Supercond. 7(2), 20182021 (1997).
http://dx.doi.org/10.1109/77.620986
49.
49. A. N. Luiten, A. G. Mann, and D. G. Blair, High-resolution measurement of temperature-dependance of the Q, coupling and resonant frequency of a microwave resonator,” Meas. Sci. Technol. 7, 949953 (1996).
http://dx.doi.org/10.1088/0957-0233/7/6/015
50.
50. P. Siyushev, V. Jacques, I. Aharonovich, F. Kaiser, T. Müller, L. Lombez, M. Atatüre, S. Castelletto, S. Prawer, F. Jelezko, and J. Wrachtrup, “Low-temperature optical characterization of a near-infrared single-photon emitter source in nanodiamonds,” New J. Phys. 11, 113029 (2009).
http://dx.doi.org/10.1088/1367-2630/11/11/113029
51.
51. J. Molla, A. Ibarra, J. Margineda, J. M. Zamarro, and A. Hernández, “Dielectric property measurement system at cryogenic temperatures and microwave frequencies,” IEEE Trans. Instrum. Meas. 42(4), 817821 (1993).
http://dx.doi.org/10.1109/19.234491
52.
52. J. M. Le Floch, J. D. Anstie, M. E. Tobar, J. G. Hartnett, P. Y. Bourgeois, and D. Cros, “Whispering modes in anisotropic and isotropic dielectric spherical resonators,” Phys. Lett. A 359, 17 (2006).
http://dx.doi.org/10.1016/j.physleta.2006.05.086
53.
53. M. E. Tobar and A. G. Mann, “Resonant frequencies of higher order modes in cylindrical anisotropic dielectric resonators,” IEEE Trans. Microwave Theory Tech. 39, 20772082 (1991).
http://dx.doi.org/10.1109/22.106549
54.
54. J-M. Le Floch, Ph.D. thesis, Université de Limoges and The University of Western Australia, France and Australia, 2007, see http://epublications.unilim.fr/theses/2007/le-floch-jean-michel/le-floch-jean-michel.pdf.
55.
55. O. Piquet, Ph.D. thesis, Université de Limoges, France, 2002.
56.
56. J. G. Hartnett, M. E. Tobar, J-M. Le Floch, J. Krupka, and P-Y. Bourgeois, “Anisotropic paramagnetic susceptibility of crystalline ruby at cryogenic temperature,” Phys. Rev. B 75, 024415 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.024415
57.
57. P-Y. Bourgeois, Y. Kersalé, N. Bazin, M. Chaubet, and V. Giordano, “A cryogenic open-cavity sapphire reference oscillator with low spurious mode density,” IEEE Trans. Ultrason., Ferroelect., Frequency Control. 51(10), 12321239 (2004).
http://dx.doi.org/10.1109/TUFFC.2004.1350950
58.
58. J. D. Anstie, J. G. Hartnett, M. E. Tobar, J. Winterflood, D. Cros, and J. Krupka, “Characterisation of a spherically symmetric fused-silica-loaded cavity microwave resonator,” Meas. Sci. Tech. 14, 286293 (2003).
http://dx.doi.org/10.1088/0957-0233/14/3/306
59.
59. O. Di Monaco, Y. Kersalé, and V. Giordano, “Resonance degeneration and spurious mode suppression in a cryogenic whispering gallery mode sapphire resonator,” IEEE Microwave Guided Wave Lett. 10(9), 368370 (2000).
http://dx.doi.org/10.1109/75.867853
60.
60. D. C. Aveline, L. Baumgartel, B. Ahn, and N. Yu, “Focused ion beam engineered whispering gallery mode resonators with open cavity structure,” Opt. Express 20(16), 1809118096 (2012).
http://dx.doi.org/10.1364/OE.20.018091
61.
61. Y. F. Gui, W. B. Dou, P. G. Su, and K. Yin, “Improvement of open resonator technique for dielectric measurement at millimetre wavelengths,” IET Microwaves Antennas Propag. 3,(7), 10361043 (2009).
http://dx.doi.org/10.1049/iet-map.2008.0179
62.
62. G. Annino, M. Cassettari, and M. Martinelli, “Open nonradiative cavities as millimetre wave single-mode resonators,” Rev. Sci. Instrum. 76(6), 064702 (2005).
http://dx.doi.org/10.1063/1.1929607
63.
63. W. W. Hansen, “A type of electrical resonator,” J. Appl. Phys. 9, 654663 (1938).
http://dx.doi.org/10.1063/1.1710371
64.
64. W. W. Hansen, “On the resonant frequency of closed concentric lines,” J. Appl. Phys. 10, 3845 (1939).
http://dx.doi.org/10.1063/1.1707239
65.
65. K. Fujisawa, “General treatment of klystron resonant Cavities,” IRE Trans. Microwave Theory Tech. 6, 344358 (1958).
http://dx.doi.org/10.1109/TMTT.1958.1125205
66.
66. E. Rivier and M. Verge-Lapisardi, “Lumped parameters of a reentering cylindrical cavity,” IEEE Trans. Microwave Theory Tech. 19, 309314 (1971).
http://dx.doi.org/10.1109/TMTT.1971.1127504
67.
67. M. Jaworski, “On the resonant frequency of a reentrant cylindrical cavity,” IEEE Trans. Microwave Theory Tech. 26, 256260 (1978).
http://dx.doi.org/10.1109/TMTT.1978.1129361
68.
68. M. B. Kelly and A. J. Sangster, “Design of cylindrical reentrant cavity resonators,” IEE Colloquium on Effective Microwave CAD No. 377, 1997.
69.
69. D. P. Howson, “Wide-gap re-entrant cavity resonators for 900-1500MHz,” in IEE Proceeding on Microwaves Optics and Antennas, December 1984, p. 131.
70.
70. L. J. Mittoni, N. P. Linthorne, A. G. Mann, and D. G. Blair, “Optimization of superconducting re-entrant cavities for transducer applications,” J. Phys. D: Appl. Phys. 26, 804809 (1993).
http://dx.doi.org/10.1088/0022-3727/26/5/013
71.
71. K. Tsubono, M. Ohashi, and H. Hirakawa,“Parametric transducer for gravitational radiation detector,” Jpn. J. Appl. Phys. 25, 622626 (1986).
http://dx.doi.org/10.1143/JJAP.25.622
72.
72. M. F. Bocko, W. W. Johnson, and V. Iafolla, “A RF superconducting electromechanical transducer for gravitational wave antennas,” IEEE Trans. Magn. 25, 13581361 (1989).
http://dx.doi.org/10.1109/20.92845
73.
73. A. Francik, “The microwave autodyne Gunn oscillator as a simple detector of EPR signal for food-irradiation dosimeter,” in Proceedings of the International Conference on Microwaves, Radar and Wireless Communications, Gdansk, Poland, 20–22 May 2002, pp. 103106.
74.
74. C. Simon, M. Luong, S. Chel, O. Napoly, J. Novo, D. Roudier, N. Rouviere, N. Baboi, N. Mildner, and D. Nolle, “Performance of a reentrant cavity beam position monitor,” Phys. Rev. Spec. Top. – Accel. Beams 11, 082802 (2008).
http://dx.doi.org/10.1103/PhysRevSTAB.11.082802
75.
75. A. J. C. Vieira, P. R. Herczfeld, A. Rosen, M. Ermold, E. E. Funk, W. D. Jemison, and K. J. Williams, “A mode-locked microchip laser optical transmitter for fiber radio,” IEEE Trans. Microwave Theory Tech. 49, 18821887 (2001).
http://dx.doi.org/10.1109/22.954802
76.
76. F. Bordoni, L. Yinghua, B. Spataro, F. Feliciangeli, F. Vasarelli, G. Cardarilli, B. Antonini, and R. Scrimaglio, “A microwave scanning surface harmonic microscope using a re-entrant resonant cavity,” Meas. Sci. Technol. 6, 12081214 (1995).
http://dx.doi.org/10.1088/0957-0233/6/8/017
77.
77. J. Baker-Jarvis, R. G. Geyer, J. H. Grosvenor, M. D. Janezic, C. A. Jones, B. Riddle, C. M. Weil, and J. Krupka, “Dielectric characterization of low-loss materials,” IEEE Trans. Dielectr. Electr. Insul. 5, 571577 (1998).
http://dx.doi.org/10.1109/94.708274
78.
78. A. Kaczkowski and A. Milewski, “High-Accuracy wide-range measurement method for determination of complex permittivity in reentrant cavity. A: Theoretical-analysis of the method,” IEEE Trans. Microwave Theory Tech. 28, 225228 (1980).
http://dx.doi.org/10.1109/TMTT.1980.1130045
79.
79. J-M. Le Floch, Y. Fan, M. Aubourg, D. Cros, N. C. Carvalho, Q. Shan, J. Bourhill, E. N. Ivanov, G. Humbert, V. Madrangeas, and M. E. Tobar, “Rigorous analysis of highly tunable cylindrical transverse magnetic mode re-entrant cavities,” Rev. Sci. Instrum. 84(12), 125114 (2013).
http://dx.doi.org/10.1063/1.4848935
80.
80. S. K. Remillard, A. Hardaway, B. Mork, J. Gilliland, and J. Gibbs, “Using a re-entrant microwave resonator to measure and model the dielectric breakdown electric field of gases,” Prog. Electromagn. Res. B 15, 175195 (2009).
http://dx.doi.org/10.2528/PIERB09041706
81.
81. A. A. Barannik, S. A. Bunyaev, N. T. Cherpak, Y. V. Propenko, A. A. Kherchenko, and S. A. Vitusevich, “Whispering gallery mode hemisphere dielectric resonators with impedance plane, IEEE Trans. Microwave Theory Tech. 58(10), 26822691 (2010).
http://dx.doi.org/10.1109/TMTT.2010.2065870
82.
82. J. G. Hartnett, D. Mouneyrac, J-M. Le Floch, J. Krupka, M. E. Tobar, and D. Cros, “Modified permittivity observed in bulk gallium arsenide and gallium phosphide sampled at 50K using whispering gallery mode method,” Appl. Phys. Lett. 93(6), 062105 (2008).
http://dx.doi.org/10.1063/1.2969905
83.
83. J. G. Hartnett, M. E. Tobar, E. N. Ivanov, and J. Krupka, “Room temperature measurement of the anisotropic loss tangent of sapphire using the whispering gallery mode technique,” IEEE Trans. Ultrason., Ferroelect., Frequency Control. 53, 3438 (2006).
http://dx.doi.org/10.1109/TUFFC.2006.1588389
84.
84. A. A. Barannik, Y. V. Prokopenko, Y. F. Filipov, N. T. Cherpak, and I. V. Korotash, “Q-factor of a millimeter-wave sapphire disk resonator with conductive end plates,” Tech. Phys. 48(5), 621625 (2003).
http://dx.doi.org/10.1134/1.1576479
85.
85. K. Sudheendran, D. Pamu, M. Ghanashyam Krishna, and K. C. James Raju, “Determination of dielectric constant and loss of high-K thin films in the microwave frequencies, Measurement 43(4), 556562 (2010).
http://dx.doi.org/10.1016/j.measurement.2009.12.026
86.
86. P. Queffelec, V. Laur, A. Chevalier, J-M. Le Floch, D. Passerieux, D. Cros, V. Madrangeas, A. Le Febvrier, S. Deputier, M. Guilloux-Viry, G. Houzet, T. Lacrevaz, C. Bermond, and B. Flechet, “Intercomparison of permittivity measurement techniques for ferroelectric thin layers,” J. Appl. Phys. 115(2), 024103 (2014).
http://dx.doi.org/10.1063/1.4858388
87.
87. M. E. Tobar, E. N. Ivanov, J. G. Hartnett, and D. Cros, “High-Q frequency stable dual-mode whispering gallery sapphire resonator,” in IEEE MTT-S International Microwave Symposium, Phoenix, Arizona, 20–25 May 2001, pp. 205208.
88.
88. B. W. Hakki and P. D. Coleman, “A dielectric resonator method of measuring inductive capacities in the millimetre range,” IEEE Trans. Microwave Theory Tech. 8, 402410 (1960).
http://dx.doi.org/10.1109/TMTT.1960.1124749
89.
89. W. E. Courtney, “Analysis and evaluation of a method pf measuring the complex permittivity and permeability of microwave insulators,” IEEE Trans. Microwave Theory Tech. 18, 476485 (1970).
http://dx.doi.org/10.1109/TMTT.1970.1127271
90.
90.IEC 61338, Sections 1-1, 1-2, and 1-3 (1996–2003), Waveguide type dielectric resonators: Part 1. General information and test conditions—Section 3. Measurement method of complex permittivity for dielectric resonator materials at microwave frequency, see www.iec.ch.
91.
91. J. Krupka, “Frequency domain complex permittivity measurements at microwave frequencies,” Meas. Sci. Technol. 16, R1R16 (2005).
http://dx.doi.org/10.1088/0957-0233/17/6/R01
92.
92. Y. Kobayashi and M. Katoh, “Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method,” IEEE Trans. Microwave Theory Tech. 33, 586592 (1985).
http://dx.doi.org/10.1109/TMTT.1985.1133033
93.
93. J. Breeze, J. Krupka, A. Centeno, and N. McN. Alford, “Temperature-stable and high-Q factor TiO2 Bragg reflector resonator,” Appl. Phys. Lett. 94(8), 082906 (2009).
http://dx.doi.org/10.1063/1.3086877
94.
94. Kagomiya, Y. Matsuda, K. Kakimoto, and H. Ohsato, “Microwave dielectric properties of YAG,” Ferroelectrics 387(1), 16 (2009).
http://dx.doi.org/10.1080/00150190902966016
95.
95. Y. Zhou, Z. Yue, and L. Li, “Preparation and microwave dielectric properties of TiO2-doped YAG ceramics,” Ferroelectrics 407(1), 6974 (2010).
http://dx.doi.org/10.1080/00150193.2010.484726
96.
96. N. A. Shtin, J. M. Lopez Romero, and E. Prokhorov, “Theory of fundamental microwave absorption in sapphire (α-Al203),” J. Appl. Phys. 106, 104115 (2009).
http://dx.doi.org/10.1063/1.3259433
97.
97. X. Aupi, J. Breeze, N. Ljepojevic, L. J. Dunne, N. Malde, A.-K. Axelsson, and N. McN. Alford, “Microwave dielectric loss in oxides: Theory and experiment,” J. Appl. Phys. 95(5), 26392645 (2004).
http://dx.doi.org/10.1063/1.1605810
98.
98. M. Kusunoki, M. Inadomaru, S. Ohshima, K. Aizawa, M. Mukaida, M. Lorenz, and H. Hochmuth, “Dielectric loss tangent of sapphire single crystal produced by edge-defined film-fed growth method,” Physica C 377, 313318 (2002).
http://dx.doi.org/10.1016/S0921-4534(01)01282-5
99.
99. N. McN. Alford, J. Breeze, X. Wang, S. J. Penn, S. Dalla, S. J. Webb, N. Ljepojevic, and X. Aupi, “Dielectric loss of oxide single crystals and polycrystalline analogues from 10 to 320K,” J. Eur. Ceram. Soc. 21, 26052611 (2001).
http://dx.doi.org/10.1016/S0955-2219(01)00324-7
100.
100. S. N. Buckley, P. Agnew, and G. P. Pells, “Cryogenic dielectric properties of sapphire at 2.45GHz, J. Phys. D: Appl. Phys. 27, 22032209 (1994).
http://dx.doi.org/10.1088/0022-3727/27/10/033
101.
101. S. Castelletto, J. P. Harrison, L. Marseglia, A. C. Stanley-Clarke, B. C. Gibson, B. A. Fairchild, J. P. Hadden, Y-L. D. Ho, M. P. Hiscocks, K. Ganesan, S. T. Huntington, F. Ladouceur, A. D. Greentree, S. Prawer, J. L. O’Brien, and J. G. Rarity, “Diamond-based structures to collect and guide light,” New J. Phys. 13, 025020 (2011).
http://dx.doi.org/10.1088/1367-2630/13/2/025020
102.
102. P. St and J. Russell, “Photonic-crystal fibers,” J. Ligthwave Tech. 24, 47294749 (2006).
http://dx.doi.org/10.1109/JLT.2006.885258
103.
103. G. Humbert, J-M. Le Floch, D. Mouneyrac, D. Ferachou, M. Aubourg, M. Tobar et al., “Hollow-core resonator based on out-of-plane two-dimensional photonic band-gap crystal cladding at microwave frequencies,” Appl. Phys. Lett. 96, 051108 (2010).
http://dx.doi.org/10.1063/1.3303857
104.
104. D. Ferachou, G. Humbert, J-M. Le Floch, M. Aubourg, J-L. Auguste, M. E. Tobar, D. Cros, and J-M. Blondy, “Compact hollow-core photonic band gap resonator with optimized metallic cavity at microwave frequencies,” Electon. Lett. 47, 805U92 (2011).
http://dx.doi.org/10.1049/el.2011.1308
105.
105. F. Couny, H. Sabert, P. J. Roberts, D. P. Williams, A. Tomlinson, B. J. Mangan, J. C. Knight, T. A. Birks, and P. St. J. Russel, “Visualizing the photonic band gap in hollow core photonic crystal fibers,” Opt. Express 13(2), 558563 (2005).
http://dx.doi.org/10.1364/OPEX.13.000558
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/3/10.1063/1.4867461
Loading
/content/aip/journal/rsi/85/3/10.1063/1.4867461
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/85/3/10.1063/1.4867461
2014-03-20
2014-07-26

Abstract

Dielectric resonators are key elements in many applications in micro to millimeter wave circuits, including ultra-narrow band filters and frequency-determining components for precision frequency synthesis. Distributed-layered and bulk low-loss crystalline and polycrystalline dielectric structures have become very important for building these devices. Proper design requires careful electromagnetic characterization of low-loss material properties. This includes exact simulation with precision numerical software and precise measurements of resonant modes. For example, we have developed the Whispering Gallery mode technique for microwave applications, which has now become the standard for characterizing low-loss structures. This paper will give some of the most common characterization techniques used in the micro to millimeter wave regime at room and cryogenic temperatures for designing high-Q dielectric loaded cavities.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/85/3/1.4867461.html;jsessionid=2iqknts7ed8kk.x-aip-live-06?itemId=/content/aip/journal/rsi/85/3/10.1063/1.4867461&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Invited Article: Dielectric material characterization techniques and designs of high-Q resonators for applications from micro to millimeter-waves frequencies applicable at room and cryogenic temperatures
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/3/10.1063/1.4867461
10.1063/1.4867461
SEARCH_EXPAND_ITEM