Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/85/3/10.1063/1.4867668
1.
1. P. Emma et al., Nat. Photonics 4(9), 641647 (2010).
http://dx.doi.org/10.1038/nphoton.2010.176
2.
2. T. Ishikawa et al., Nat. Photonics 6(8), 540544 (2012).
http://dx.doi.org/10.1038/nphoton.2012.141
3.
3. H. T. Philipp et al., Nucl. Instrum. Methods Phys. Res., Sec. A 649(1), 6769 (2011).
http://dx.doi.org/10.1016/j.nima.2010.11.189
4.
4. B. Henrich et al., Nucl. Instrum. Methods Phys. Res., Sec. A 633, S11S14 (2011).
http://dx.doi.org/10.1016/j.nima.2010.06.107
5.
5. M. Porro et al., Nucl. Instrum. Methods Phys. Res., Sec. A 624(2), 509519 (2010).
http://dx.doi.org/10.1016/j.nima.2010.02.254
6.
6. A. Blue et al., Nucl. Instrum. Methods Phys. Res., Sec. A 607(1), 5556 (2009).
http://dx.doi.org/10.1016/j.nima.2009.03.114
7.
7. G. A. Carini et al., Nucl. Instrum. Methods Phys. Res., Sec. A 649(1), 7577 (2011).
http://dx.doi.org/10.1016/j.nima.2010.12.241
8.
8. S. Tsuneta et al., Sol. Phys. 136(1), 3767 (1991).
http://dx.doi.org/10.1007/BF00151694
9.
9. B. E. Burke et al., IEEE Trans. Nucl. Sci. 41(1), 375385 (1994).
http://dx.doi.org/10.1109/23.281527
10.
10. Y. Tanaka et al., Publ. Astron. Soc. Jpn. 46(3), L37 (1994).
11.
11. B. E. Burke et al., IEEE Trans. Electron Devices 44(10), 16331642 (1997).
http://dx.doi.org/10.1109/16.628815
12.
12. L. Struder et al., Astron. Astrophys. 365(1), L18L26 (2001).
http://dx.doi.org/10.1051/0004-6361:20000066
13.
13. M. J. L. Turner et al., Astron. Astrophys. 365(1), L27L35 (2001).
http://dx.doi.org/10.1051/0004-6361:20000087
14.
14. K. Koyama et al., Publ. Astron. Soc. Jpn. 59, S23S33 (2007).
http://dx.doi.org/10.1093/pasj/59.sp1.S23
15.
15. S. M. Gruner et al., Rev. Sci. Instrum. 73(8), 28152842 (2002).
http://dx.doi.org/10.1063/1.1488674
16.
16. J. R. Janesick, Scientific Charge-Coupled Devices (SPIE Press, Bellingham, WA, 2001).
17.
17. G. W. Fraser et al., Nucl. Instrum. Methods Phys. Res., Sec. A 350(1–2), 368378 (1994).
http://dx.doi.org/10.1016/0168-9002(94)91185-1
18.
18. A. Owens et al., Nucl. Instrum. Methods Phys. Res., Sec. A 491(3), 437443 (2002).
http://dx.doi.org/10.1016/S0168-9002(02)01178-6
19.
19. G. F. Moroni et al., Exp. Astron. 34(1), 4364 (2012).
http://dx.doi.org/10.1007/s10686-012-9298-x
20.
20. J. H. Hubbell et al., J. Phys. Chem. Ref. Data 4(3), 471538 (1975).
http://dx.doi.org/10.1063/1.555523
21.
21. T. P. Ma and P. V. Dressendorfer, Ionizing Radiation Effects in MOS Devices and Circuits (Wiley, New York, 1989).
22.
22. K. Tamasaku et al., Nucl. Instrum. Methods Phys. Res., Sec. A 467–468, 686689 (2001).
http://dx.doi.org/10.1016/S0168-9002(01)00446-6
23.
23. G. Potdevin et al., JINST 4, P09010 (2009).
http://dx.doi.org/10.1088/1748-0221/4/09/P09010
24.
24. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley-Interscience, Hoboken, NJ, 2007).
25.
25. D. B. M. Klaassen, Solid-State Electron. 35(7), 953959 (1992).
http://dx.doi.org/10.1016/0038-1101(92)90325-7
26.
26. Y. Ishihara et al., ISSCC Dig. Tech. Pap. 25, 168 (1982).
27.
27. M. Nakasako et al., Rev. Sci. Instrum. 84(9), 093705 (2013).
http://dx.doi.org/10.1063/1.4822123
28.
28. M. Yamaga et al., Proceedings of ICALEPCS, Art. number TUCAUST06, 2011.
29.
29. K. Tono et al., New J. Phys. 15, 083035 (2013).
http://dx.doi.org/10.1088/1367-2630/15/8/083035
30.
30. T. Tanaka et al., Phys. Rev. ST Accel. Beams 15(11), 110701 (2012).
http://dx.doi.org/10.1103/PhysRevSTAB.15.110701
31.
31. T. Katayama et al., Appl. Phys. Lett. 103(13), 131105 (2013).
http://dx.doi.org/10.1063/1.4821108
32.
32. Y. Obara et al., Opt. Express 22(1), 11051113 (2014).
http://dx.doi.org/10.1364/OE.22.001105
33.
33. C. H. Kuo et al., Adv. Funct. Mater. 17(18), 37733780 (2007).
http://dx.doi.org/10.1002/adfm.200700356
34.
34. C. Song et al., J. Appl. Crystallogr. 47(1), 188197 (2014).
http://dx.doi.org/10.1107/S1600576713029944
35.
35. Y. Inubushi et al., Phys. Rev. Lett. 109(14), 144801 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.144801
36.
36. K. Tamasaku et al., “X-ray two-photon absorption competing against single and sequential multiphoton processes,” Nat. Photonics (published online).
http://dx.doi.org/10.1038/nphoton.2014.10
37.
37. T. Kimura et al., Nat. Commun. 5, 3052 (2014).
http://dx.doi.org/10.1038/ncomms4052
38.
38. Y. Takahashi et al., Nano Lett. 13(12), 6028 (2013).
http://dx.doi.org/10.1021/nl403247x
39.
39. T. Hara et al., Phys. Rev. ST Accel. Beams 16(8), 080701 (2013).
http://dx.doi.org/10.1103/PhysRevSTAB.16.080701
40.
40. K. Tamasaku et al., Phys. Rev. Lett. 111(4), 043001 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.043001
41.
41. T. Hara et al., Nat. Commun. 4, 2919 (2013).
http://dx.doi.org/10.1038/ncomms3919
42.
42. D. E. Groom et al., Nucl. Instrum. Methods Phys. Res., Sec. A 442(1–3), 216222 (2000).
http://dx.doi.org/10.1016/S0168-9002(99)01224-3
43.
43. M. S. Robbins, in Single-Photon Imaging, edited by P. Seitz and A. J. P. Theuwissen (Springer, 2011), Chap. 6, pp. 103122.
44.
44. D. J. Burt, GEC Journal of Research 12(3), 130140 (1995).
45.
45. L. Struder et al., Nucl. Instrum. Methods Phys. Res., Sec. A 614(3), 483496 (2010).
http://dx.doi.org/10.1016/j.nima.2009.12.053
46.
46. P. Denes et al., Rev. Sci. Instrum. 80, 083302 (2009).
http://dx.doi.org/10.1063/1.3187222
47.
47.The pulse frequency of the SACLA facility was designed to be 60 Hz, but started the user operation with 10 Hz and increased the frequency to 30 Hz. In order to optimize the detector performance under this condition, we reduced the frame rate to 30 Hz to achieve better noise performance (Appendix B).
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/3/10.1063/1.4867668
Loading
/content/aip/journal/rsi/85/3/10.1063/1.4867668
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/85/3/10.1063/1.4867668
2014-03-26
2016-12-08

Abstract

This paper presents development of an X-ray pixel detector with a multi-port charge-coupled device (MPCCD) for X-ray Free-Electron laser experiments. The fabrication process of the CCD was selected based on the X-ray radiation hardness against the estimated annual dose of 1.6 × 1014 photon/mm2. The sensor device was optimized by maximizing the full well capacity as high as 5 Me- within 50 m square pixels while keeping the single photon detection capability for X-ray photons higher than 6 keV and a readout speed of 60 frames/s. The system development also included a detector system for the MPCCD sensor. This paper summarizes the performance, calibration methods, and operation status.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/85/3/1.4867668.html;jsessionid=3pJ7e-d8vUm1vxImrQj8nVPe.x-aip-live-06?itemId=/content/aip/journal/rsi/85/3/10.1063/1.4867668&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/85/3/10.1063/1.4867668&pageURL=http://scitation.aip.org/content/aip/journal/rsi/85/3/10.1063/1.4867668'
Right1,Right2,Right3,