1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Mimicking Mars: A vacuum simulation chamber for testing environmental instrumentation for Mars exploration
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/85/3/10.1063/1.4868592
1.
1. S. L. Hess, R. M. Henry, C. B. Leovy, J. A. Ryan, and J. E. Tillman, “Meteorological results from the surface of mars: Viking 1 and 2,” J. Geophys. Res. 82(28), 45594574, doi:10.1029/JS082i028p04559 (1977).
http://dx.doi.org/10.1029/JS082i028p04559
2.
2. S. R. Lewis, M. Collins, and P. L. Read, “A climate database for Mars,” J. Geophys. Res.: Planets 104, 2417724194, doi:10.1029/1999JE001024 (1999).
http://dx.doi.org/10.1029/1999JE001024
3.
3. A. C. Schuerger, P. Fajardo-Cavazos, C. A. Clausen, J. E. Moores, P. H. Smith, and W. L. Nicholson, “Slow degradation of ATP in simulated martian environments suggests long residence times for the biosignature molecule on spacecraft surfaces on Mars,” Icarus 194(1), 86100 (2008).
http://dx.doi.org/10.1016/j.icarus.2007.10.010
4.
4. A. Fekete, G. Rontó, M. Hegedüs, K. Módos, A. Bérces, G. Kovács, H. Lammer, and C. Panitz, “Simulation experiments of the effect of space environment on bacteriophage and DNA thin films,” Adv. Space Res. 33(8), 13061310 (2004).
http://dx.doi.org/10.1016/j.asr.2003.08.037
5.
5. M. P. Zorzano, E. Mateo-Martí, O. Prieto-Ballesteros, S. Osuna, and N. Renno, “Stability of liquid saline water on present day Mars,” Geophys. Res. Lett. 36(20), L20201, doi:10.1029/2009GL040315 (2009).
http://dx.doi.org/10.1029/2009GL040315
6.
6. G. M. Muñoz Caro et al., “New results on thermal and photodesorption of CO ice using the novel InterStellar Astrochemistry Chamber (ISAC),” Astron. Astrophys. 522, A108 (2010).
http://dx.doi.org/10.1051/0004-6361/200912462
7.
7. E. Mateo-Martí, O. Prieto-Ballesteros, J. M. Sobrado, J. Gómez-Elvira, and J. A. Martín-Gago, “A chamber for studying planetary environments and its applications to astrobiology,” Meas. Sci. Technol. 17(8), 22742280 (2006).
http://dx.doi.org/10.1088/0957-0233/17/8/031
8.
8. L. L. Jensen, J. Merrison, A. A. Hansen, K. A. Mikkelsen, T. Kristoffersen, P. Nornberg, B. A. Lomstein, and K. Finster, “A facility for long-term Mars simulation experiments: the Mars Environmental Simulation Chamber (MESCH),” Astrobiology 8(3), 537548 (2008).
http://dx.doi.org/10.1089/ast.2006.0092
9.
9. R. Greeley, R. Leach, B. White, J. Iversen, and J. Pollack, “Threshold windspeeds for sand on mars: Wind tunnel simulations,” Geophys. Res. Lett. 7(2), 121124, doi:10.1029/GL007i002p00121 (1980).
http://dx.doi.org/10.1029/GL007i002p00121
10.
10. C. F. Wilson, A. L. Camilletti, S. B. Calcutt, and P. M. Ligrani, “A wind tunnel for the calibration of Mars wind sensors,” Planet. Space Sci. 56(11), 15321541 (2008).
http://dx.doi.org/10.1016/j.pss.2008.05.011
11.
11. J. P. Merrison, H. Bechtold, H. Gunnlaugsson, A. Jensen, K. Kinch, P. Nornberg, and K. Rasmussen, “An environmental simulation wind tunnel for studying Aeolian transport on mars,” Planet. Space Sci. 56(3–4), 426437 (2008).
http://dx.doi.org/10.1016/j.pss.2007.11.007
12.
12. J. Gómez-Elvira et al., “REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover,” Space Sci. Rev. 170(1–4), 583640 (2012).
http://dx.doi.org/10.1007/s11214-012-9921-1
13.
13. J. P. Grotzinger et al., “Mars Science Laboratory Mission and Science Investigation,” Space Sci. Rev. 170(1–4), 556 (2012).
http://dx.doi.org/10.1007/s11214-012-9892-2
14.
14. M. B. Madsen et al., “The magnetic properties experiments on Mars Pathfinder,” J. Geophys. Res. 104(E4), 8761, doi:10.1029/1998JE900006 (1999).
http://dx.doi.org/10.1029/1998JE900006
15.
15. P. Nørnberg et al., “Salten Skov I: A Martian magnetic dust analogue,” Planet. Space Sci. 57(5–6), 628631 (2009).
http://dx.doi.org/10.1016/j.pss.2008.08.017
16.
16. Handbook of Chemistry and Physics, 89th ed, edited by D. R. Lide (CRC Press, Taylor and Francis, FL, 2009), p. 2692.
17.
17. D. W. Mueller and H. I. Abu-Mulaweh, “Prediction of the temperature in a fin cooled by natural convection and radiation,” Appl. Therm. Eng. 26(14–15), 16621668 (2006).
http://dx.doi.org/10.1016/j.applthermaleng.2005.11.014
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/3/10.1063/1.4868592
Loading
/content/aip/journal/rsi/85/3/10.1063/1.4868592
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/85/3/10.1063/1.4868592
2014-03-25
2014-08-20

Abstract

We have built a Mars environmental simulation chamber, designed to test new electromechanical devices and instruments that could be used in space missions. We have developed this environmental system aiming at validating the meteorological station Rover Environment Monitoring Station of NASA's Mars Science Laboratory mission currently installed on Curiosity rover. The vacuum chamber has been built following a modular configuration and operates at pressures ranging from 1000 to 10−6 mbars, and it is possible to control the gas composition (the atmosphere) within this pressure range. The device (or sample) under study can be irradiated by an ultraviolet source and its temperature can be controlled in the range from 108 to 423 K. As an important improvement with respect to other simulation chambers, the atmospheric gas into the experimental chamber is cooled at the walls by the use of liquid-nitrogen heat exchangers. This chamber incorporates a dust generation mechanism designed to study Martian-dust deposition while modifying the conditions of temperature, and UV irradiated.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/85/3/1.4868592.html;jsessionid=2k4rc944dw27r.x-aip-live-03?itemId=/content/aip/journal/rsi/85/3/10.1063/1.4868592&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Mimicking Mars: A vacuum simulation chamber for testing environmental instrumentation for Mars exploration
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/3/10.1063/1.4868592
10.1063/1.4868592
SEARCH_EXPAND_ITEM