Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. L. Hess, R. M. Henry, C. B. Leovy, J. A. Ryan, and J. E. Tillman, “Meteorological results from the surface of mars: Viking 1 and 2,” J. Geophys. Res. 82(28), 45594574, doi:10.1029/JS082i028p04559 (1977).
2. S. R. Lewis, M. Collins, and P. L. Read, “A climate database for Mars,” J. Geophys. Res.: Planets 104, 2417724194, doi:10.1029/1999JE001024 (1999).
3. A. C. Schuerger, P. Fajardo-Cavazos, C. A. Clausen, J. E. Moores, P. H. Smith, and W. L. Nicholson, “Slow degradation of ATP in simulated martian environments suggests long residence times for the biosignature molecule on spacecraft surfaces on Mars,” Icarus 194(1), 86100 (2008).
4. A. Fekete, G. Rontó, M. Hegedüs, K. Módos, A. Bérces, G. Kovács, H. Lammer, and C. Panitz, “Simulation experiments of the effect of space environment on bacteriophage and DNA thin films,” Adv. Space Res. 33(8), 13061310 (2004).
5. M. P. Zorzano, E. Mateo-Martí, O. Prieto-Ballesteros, S. Osuna, and N. Renno, “Stability of liquid saline water on present day Mars,” Geophys. Res. Lett. 36(20), L20201, doi:10.1029/2009GL040315 (2009).
6. G. M. Muñoz Caro et al., “New results on thermal and photodesorption of CO ice using the novel InterStellar Astrochemistry Chamber (ISAC),” Astron. Astrophys. 522, A108 (2010).
7. E. Mateo-Martí, O. Prieto-Ballesteros, J. M. Sobrado, J. Gómez-Elvira, and J. A. Martín-Gago, “A chamber for studying planetary environments and its applications to astrobiology,” Meas. Sci. Technol. 17(8), 22742280 (2006).
8. L. L. Jensen, J. Merrison, A. A. Hansen, K. A. Mikkelsen, T. Kristoffersen, P. Nornberg, B. A. Lomstein, and K. Finster, “A facility for long-term Mars simulation experiments: the Mars Environmental Simulation Chamber (MESCH),” Astrobiology 8(3), 537548 (2008).
9. R. Greeley, R. Leach, B. White, J. Iversen, and J. Pollack, “Threshold windspeeds for sand on mars: Wind tunnel simulations,” Geophys. Res. Lett. 7(2), 121124, doi:10.1029/GL007i002p00121 (1980).
10. C. F. Wilson, A. L. Camilletti, S. B. Calcutt, and P. M. Ligrani, “A wind tunnel for the calibration of Mars wind sensors,” Planet. Space Sci. 56(11), 15321541 (2008).
11. J. P. Merrison, H. Bechtold, H. Gunnlaugsson, A. Jensen, K. Kinch, P. Nornberg, and K. Rasmussen, “An environmental simulation wind tunnel for studying Aeolian transport on mars,” Planet. Space Sci. 56(3–4), 426437 (2008).
12. J. Gómez-Elvira et al., “REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover,” Space Sci. Rev. 170(1–4), 583640 (2012).
13. J. P. Grotzinger et al., “Mars Science Laboratory Mission and Science Investigation,” Space Sci. Rev. 170(1–4), 556 (2012).
14. M. B. Madsen et al., “The magnetic properties experiments on Mars Pathfinder,” J. Geophys. Res. 104(E4), 8761, doi:10.1029/1998JE900006 (1999).
15. P. Nørnberg et al., “Salten Skov I: A Martian magnetic dust analogue,” Planet. Space Sci. 57(5–6), 628631 (2009).
16. Handbook of Chemistry and Physics, 89th ed, edited by D. R. Lide (CRC Press, Taylor and Francis, FL, 2009), p. 2692.
17. D. W. Mueller and H. I. Abu-Mulaweh, “Prediction of the temperature in a fin cooled by natural convection and radiation,” Appl. Therm. Eng. 26(14–15), 16621668 (2006).

Data & Media loading...


Article metrics loading...



We have built a Mars environmental simulation chamber, designed to test new electromechanical devices and instruments that could be used in space missions. We have developed this environmental system aiming at validating the meteorological station Rover Environment Monitoring Station of NASA's Mars Science Laboratory mission currently installed on Curiosity rover. The vacuum chamber has been built following a modular configuration and operates at pressures ranging from 1000 to 10−6 mbars, and it is possible to control the gas composition (the atmosphere) within this pressure range. The device (or sample) under study can be irradiated by an ultraviolet source and its temperature can be controlled in the range from 108 to 423 K. As an important improvement with respect to other simulation chambers, the atmospheric gas into the experimental chamber is cooled at the walls by the use of liquid-nitrogen heat exchangers. This chamber incorporates a dust generation mechanism designed to study Martian-dust deposition while modifying the conditions of temperature, and UV irradiated.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd