1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
High-accuracy direct ZT and intrinsic properties measurement of thermoelectric couple devices
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/85/4/10.1063/1.4870278
1.
1. D. M. Rowe, Thermoelectrics Handbook: Macro to Nano (Taylor and Francis Group, LLC, Boca Raton, 2006).
2.
2. A. F. Ioffe, Semiconductor Thermoelements and Thermo-Electric Cooling (Infosearch Ltd., London, 1957).
3.
3. H. J. Goldsmid, Electronic Refrigeration (Plenum Press, 1964).
4.
4. J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, Angew. Chem. Int. Ed. Engl. 48, 8616 (2009).
http://dx.doi.org/10.1002/anie.200900598
5.
5. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).
http://dx.doi.org/10.1002/adma.200600527
6.
6. G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).
http://dx.doi.org/10.1038/nmat2090
7.
7. M. Zebarjadi, K. Esfarjani, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Energy Environ. Sci. 5, 5147 (2012).
http://dx.doi.org/10.1039/c1ee02497c
8.
8. D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, Nat. Mater. 10, 532 (2011).
http://dx.doi.org/10.1038/nmat3013
9.
9. L. E. Bell, Science 321, 1457 (2008).
http://dx.doi.org/10.1126/science.1158899
10.
10. D. M. Rowe, Thermoelectrics and Its Energy Harvesting: Modules, Systems, and Applications in Thermoelectrics (Taylor and Francis Group, LLC, Boca Raton, 2012).
11.
11. C. A. Domenicali, Phys. Rev. 92, 877 (1953).
http://dx.doi.org/10.1103/PhysRev.92.877
12.
12. D. Kraemer, K. McEnaney, M. Chiesa, and G. Chen, Sol. Energy 86, 1338 (2012).
http://dx.doi.org/10.1016/j.solener.2012.01.025
13.
13. K. McEnaney, D. Kraemer, Z. Ren, and G. Chen, J. Appl. Phys. 110, 074502 (2011).
http://dx.doi.org/10.1063/1.3642988
14.
14. T. P. Hogan, in Thermoelectrics Handbook: Macro to Nano, edited by D. M. Rowe (Taylor and Francis Group, LLC, Boca Raton, 2006).
15.
15. G. Snyder and T. Ursell, Phys. Rev. Lett. 91, 148301 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.148301
16.
16. G. J. Snyder, J. Chem. Phys. 84, 2436 (2004).
http://dx.doi.org/10.1063/1.1689396
17.
17. D. M. Rowe, CRC Handbook of Thermoelectrics (CRC Press LLC, Boca Raton, 1995).
18.
18. T. C. Harman, J. Appl. Phys. 29, 1373 (1958).
http://dx.doi.org/10.1063/1.1723445
19.
19. A. Bowley, L. Cowles, G. Williams, and H. J. Goldsmid, J. Sci. Instrum. 38, 433 (1961).
http://dx.doi.org/10.1088/0950-7671/38/11/309
20.
20. L. I. Anatychuk and V. V. Lysko, AIP Conf. Proc. 1449, 373 (2012).
http://dx.doi.org/10.1063/1.4731574
21.
21. A. W. Penn, J. Sci. Instrum. 41, 626 (1964).
http://dx.doi.org/10.1088/0950-7671/41/10/311
22.
22. R. Buist, in Proceedings of the XI International Conference on Thermoelectrics (AIP, 1992).
23.
23. D. Kraemer and G. Chen, Rev. Sci. Instrum. 85, 025108 (2014).
http://dx.doi.org/10.1063/1.4865111
24.
24. B. Sherman, R. R. Heikes, and R. W. Ure, J. Appl. Phys. 31, 1 (1960).
http://dx.doi.org/10.1063/1.1735380
25.
25. A. Muto, D. Kraemer, Q. Hao, Z. F. Ren, and G. Chen, Rev. Sci. Instrum. 80, 093901 (2009).
http://dx.doi.org/10.1063/1.3212668
26.
26.International Electrotechnical Commission (IEC) Standard 60584-2 ed1.0, 1982, “Thermocouples. Part 2: Tolerances” (IEC, Geneva, Switzerland, 1982), http://www.iec.ch.
27.
27. K. D. Maglić, Compendium of Thermophysical Property Measurement Methods (Plenum Press, New York, 1984).
28.
28. R. J. Buist, in CRC Handbook of Thermoelectronics, edited by D. M. Rowe (CRC Press, Boca Raton, 1995).
29.
29. G. J. Snyder, in Thermoelectronics Handbook: Macro to Nano, edited by D. M. Rowe (Taylor and Francis Group, LLC, Boca Raton, 2006).
30.
30. E. Altenkirch, Phys. Z. 12, 920 (1911).
31.
31. L. J. Ybarrondo, Solid State Electron. 10, 620 (1967).
http://dx.doi.org/10.1016/0038-1101(67)90144-X
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/4/10.1063/1.4870278
Loading
/content/aip/journal/rsi/85/4/10.1063/1.4870278
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/85/4/10.1063/1.4870278
2014-04-09
2014-09-19

Abstract

Advances in thermoelectric materials in recent years have led to significant improvements in thermoelectric device performance and thus, give rise to many new potential applications. In order to optimize a thermoelectric device for specific applications and to accurately predict its performance ideally the material's figure of merit ZT as well as the individual intrinsic properties (Seebeck coefficient, electrical resistivity, and thermal conductivity) should be known with high accuracy. For that matter, we developed two experimental methods in which the first directly obtains the ZT and the second directly measures the individual intrinsic leg properties of the same p/n-type thermoelectric couple device. This has the advantage that all material properties are measured in the same sample direction after the thermoelectric legs have been mounted in the final device. Therefore, possible effects from crystal anisotropy and from the device fabrication process are accounted for. The Seebeck coefficients, electrical resistivities, and thermal conductivities are measured with differential methods to minimize measurement uncertainties to below 3%. The thermoelectric couple ZT is directly measured with a differential Harman method which is in excellent agreement with the calculated ZT from the individual leg properties. The errors in both the directly measured and calculated thermoelectric couple ZT are below 5% which is significantly lower than typical uncertainties using commercial methods. Thus, the developed technique is ideal for characterizing assembled couple devices and individual thermoelectric materials and enables accurate device optimization and performance predictions. We demonstrate the methods by measuring a p/n-type thermoelectric couple device assembled from commercial bulk thermoelectric BiTe elements in the temperature range of 30 °C–150 °C and discuss the performance of the couple thermoelectric generator in terms of its efficiency and materials’ self-compatibility.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/85/4/1.4870278.html;jsessionid=1pfbb5468wcnv.x-aip-live-03?itemId=/content/aip/journal/rsi/85/4/10.1063/1.4870278&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: High-accuracy direct ZT and intrinsic properties measurement of thermoelectric couple devices
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/4/10.1063/1.4870278
10.1063/1.4870278
SEARCH_EXPAND_ITEM