1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Selective nano-patterning of graphene using a heated atomic force microscope tip
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/85/4/10.1063/1.4870588
1.
1. A. A. Tseng, A. Notargiacomo, and T. P. Chen, J. Vac. Sci. Technol. B 23, 877894 (2005).
http://dx.doi.org/10.1116/1.1926293
2.
2. P. E. Sheehan, L. J. Whitman, W. P. King, and B. A. Nelson, Appl. Phys. Lett. 85, 15891591 (2004).
http://dx.doi.org/10.1063/1.1785860
3.
3. O. Fenwick, L. Bozec, D. Credgington, A. Hammiche, G. M. Lazzerini, Y. R. Silberberg, and F. Cacialli, Nat. Nanotechnol. 4, 664668 (2009).
http://dx.doi.org/10.1038/nnano.2009.254
4.
4. P. Avouris, T. Hertel, and R. Martel, Appl. Phys. Lett. 71, 285287 (1997).
http://dx.doi.org/10.1063/1.119521
5.
5. M. K. Herndon, R. T. Collins, R. E. Hollingsworth, P. R. Larson, and M. B. Johnson, Appl. Phys. Lett. 74, 141143 (1999).
http://dx.doi.org/10.1063/1.122976
6.
6. K. Lee, S. J. Park, C. A. Mirkin, J. C. Smith, and M. Mrksich, Science 295, 17021705 (2002).
http://dx.doi.org/10.1126/science.1067172
7.
7. W. P. King, T. W. Kenny, K. E. Goodson, G. L. W. Cross, M. Despont, U. T. Durig, H. Rothuizen, G. Binning, and P. Vettiger, J. Microelectromech. Syst. 11, 765774 (2002).
http://dx.doi.org/10.1109/JMEMS.2002.803283
8.
8. T. Ono, P. N. Minh, D. W. Lee, and M. Esashi, Rev. Laser Eng. 29, 516521 (2001).
http://dx.doi.org/10.2184/lsj.29.516
9.
9. D. W. Lee, T. Ono, T. Abe, and M. Esashi, in Proceedings of 14th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, Interlaken, Switzerland, 2001), pp. 204207.
10.
10. D. W. Lee, T. Ono, T. Abe, and M. Ewawhi, J. Microelectromech. Syst. 11, 215221 (2002).
http://dx.doi.org/10.1109/JMEMS.2002.1007400
11.
11. D. W. Lee, T. Ono, and M. Esashi, Nanotechnology 13, 2932 (2002).
http://dx.doi.org/10.1088/0957-4484/13/1/306
12.
12. D. W. Lee and I. K. Oh, Microelectron. Eng. 84, 10411044 (2007).
http://dx.doi.org/10.1016/j.mee.2007.01.104
13.
13. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666669 (2004).
http://dx.doi.org/10.1126/science.1102896
14.
14. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature (London) 438, 201204 (2005).
http://dx.doi.org/10.1038/nature04235
15.
15. K. S. Novoselove, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Kastsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438, 197200 (2005).
http://dx.doi.org/10.1038/nature04233
16.
16. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and H. W. A. De, Science 312, 11911196 (2006).
http://dx.doi.org/10.1126/science.1125925
17.
17. K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stomer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Science 315, 1379 (2007).
http://dx.doi.org/10.1126/science.1137201
18.
18. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183191 (2007).
http://dx.doi.org/10.1038/nmat1849
19.
19. Z. Chen, Y. M. Lin, M. J. Rooks, and P. Avouris, Physica E 40, 228232 (2007).
http://dx.doi.org/10.1016/j.physe.2007.06.020
20.
20. L. Weng, L. Zhang, Y. P. Chen, and L. P. Rokhinson, Appl. Phys. Lett. 93, 093107 (2008).
http://dx.doi.org/10.1063/1.2976429
21.
21. S. Masubuchi, M. Ono, K. Yoshida, K. Hirakawa, and T. Machida, Appl. Phys. Lett. 194, 082107 (2009).
http://dx.doi.org/10.1063/1.3089693
22.
22. A. J. Giesbers, U. Zeitler, S. Neubeck, F. Freitag, K. S. Novoselov, and J. C. Maan, Solid State Commun. 147, 366369 (2008).
http://dx.doi.org/10.1016/j.ssc.2008.06.027
23.
23. S. Neubeck, F. Freitag, R. Yang, and K. S. Novoselov, Phys. Status Solidi B 247, 29042908 (2010).
http://dx.doi.org/10.1002/pssb.201000186
24.
24. K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, Nat. Chem. 2, 10151024 (2010).
http://dx.doi.org/10.1038/nchem.907
25.
25. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, Nature (London) 448, 457460 (2007).
http://dx.doi.org/10.1038/nature06016
26.
26. G. Eda and M. Chhowalla, Adv. Mater. 22, 23922415 (2010).
http://dx.doi.org/10.1002/adma.200903689
27.
27. Z. Wei, D. Wang, S. Kim, S. Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo, Science 328, 13731376 (2010).
http://dx.doi.org/10.1126/science.1188119
28.
28. J. Cervenka, R. Kalousek, M. Bartosík, D. Skoda, O. Tomanec, and T. Sikola, Appl. Surf. Sci. 253, 23732378 (2006).
http://dx.doi.org/10.1016/j.apsusc.2006.03.095
29.
29. D. W. Lee, T. Ono, and M. Esashi, J. Micromech. Microeng. 12, 841848 (2002).
http://dx.doi.org/10.1088/0960-1317/12/6/315
30.
30. P. Vettiger, J. Brugger, M. Despont, U. Drechsler, U. Durig, W. Haberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, and G. Binnig, Microelectron. Eng. 46, 1117 (1999).
http://dx.doi.org/10.1016/S0167-9317(99)00006-4
31.
31. B. A. Nelson and W. P. King, Sens. Actuators A 140, 5159 (2007).
http://dx.doi.org/10.1016/j.sna.2007.06.008
32.
32. K. J. Kim, K. Park, J. Lee, Z. M. Zhang, and W. P. King, Sens. Actuators A 136, 95103 (2007).
http://dx.doi.org/10.1016/j.sna.2006.10.052
33.
33. D. P. Burt, P. S. Dobson, L. Donaldson, and J. M. R. Weaver, Microelectron. Eng. 85, 625630 (2008).
http://dx.doi.org/10.1016/j.mee.2007.11.010
34.
34. D. Resnik, D. Vrtacnik, U. Aliancic, M. Mozek, and S. Amon, Microelectronics. J. 34, 591593 (2003).
http://dx.doi.org/10.1016/S0026-2692(03)00056-9
35.
35. Y. Zhang, T. S. Sriram, R. B. Marcus, and Y. Zhang, Appl. Phys. Lett. 69, 42604261 (1996).
http://dx.doi.org/10.1063/1.116964
36.
36. Y. Wang and D. W. V. D. Weide, J. Vac. Sci. Technol. B 23, 15821584 (2005).
http://dx.doi.org/10.1116/1.1947805
37.
37. H. J. H. Chen and C. S. Hung, Nanotechnology 18, 355305 (2007).
http://dx.doi.org/10.1088/0957-4484/18/35/355305
38.
38. R. J. Grow, S. C. Minne, S. R. Manalis, and C. F. Quate, J. Microelectromech. Syst. 11, 317321 (2002).
http://dx.doi.org/10.1109/JMEMS.2002.800924
39.
39. Z. Cheng, Q. Zhou, C. Wang, Q. Li, C. Wang, and Y. Fang, Nano Lett. 11, 767771 (2011).
http://dx.doi.org/10.1021/nl103977d
40.
40. A. L. Weisenhorn, P. K. Hansma, T. R. Albrecht, and C. F. Quate, Appl. Phys. Lett. 54, 2651 (1989).
http://dx.doi.org/10.1063/1.101024
41.
41. A. S. Basu, S. Mcnamara, and Y. B. Gianchandani, J. Vac. Sci. Technol. B 22, 3217 (2004).
http://dx.doi.org/10.1116/1.1808732
42.
42. M. Z. Hossain, J. E. Johns, K. H. Bevan, H. J. Karmel, Y. T. Liang, S. Yoshimoto, K. Mukai, T. Koitaya, J. Yoshinobu, M. Kawai, A. M. Lear, L. L. Kesmodel, S. L. Tait, and M. C. Hersam, Nat. Chem. 4, 305309 (2012).
http://dx.doi.org/10.1038/nchem.1269
43.
43. L. Li, R. Sunmin, R. T. Michelle, S. Elena, J. Naeyoung, S. H. Mark, L. S. Michael, E. B. Louis, and W. F. George, Nano Lett. 8, 19651970 (2008).
http://dx.doi.org/10.1021/nl0808684
44.
44. H. He, J. Klinowski, M. Forster, and A. Lerf, Chem. Phys. Lett. 287, 5356 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00144-4
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/4/10.1063/1.4870588
Loading
/content/aip/journal/rsi/85/4/10.1063/1.4870588
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/85/4/10.1063/1.4870588
2014-04-14
2015-04-19

Abstract

In this study, we introduce a selective thermochemical nano-patterning method of graphene on insulating substrates. A tiny heater formed at the end of an atomic force microscope (AFM) cantilever is optimized by a finite element method. The cantilever device is fabricated using conventional micromachining processes. After preliminary tests of the cantilever device, nano-patterning experiments are conducted with various conducting and insulating samples. The results indicate that faster scanning speed and higher contact force are desirable to reduce the sizes of nano-patterns. With the experimental condition of 1 m/s and 24 mW, the heated AFM tip generates a graphene oxide layer of 3.6 nm height and 363 nm width, on a 300 nm thick SiO layer, with a tip contact force of 100 nN.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/85/4/1.4870588.html;jsessionid=9r59m2nc9mbdp.x-aip-live-02?itemId=/content/aip/journal/rsi/85/4/10.1063/1.4870588&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Selective nano-patterning of graphene using a heated atomic force microscope tip
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/4/10.1063/1.4870588
10.1063/1.4870588
SEARCH_EXPAND_ITEM