Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Ashkin, J. Dziedzic, J. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288290 (1986).
2. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Ann. Rev. Biophys. Biomol. Struct. 23, 247285 (1994).
3. J. Liphardt, B. Onoa, S. B. Smith, I. Tinoco, and C. Bustamante, “Reversible unfolding of single RNA molecules by mechanical force,” Science 292, 733737 (2001).
4. J. Liphardt, S. Dumont, S. B. Smith, I. Tinoco, and C. Bustamante, “Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski's equality,” Science 296, 18321835 (2002).
5. D. G. Grier, “A revolution in optical manipulation,” Nature(London) 424, 810816 (2003).
6. J. C. Crocker, J. Matteo, A. Dinsmore, and A. Yodh, “Entropic attraction and repulsion in binary colloids probed with a line optical tweezer,” Phys. Rev. Lett. 82, 4352 (1999).
7. P. L. Biancaniello, A. J. Kim, and J. C. Crocker, “Colloidal interactions and self-assembly using DNA hybridization,” Phys. Rev. Lett. 94, 058302 (2005).
8. H. Hansen-Goos, C. Lutz, C. Bechinger, and R. Roth, “From pair correlations to pair interactions: An exact relation in one-dimensional systems,” Europhys. Lett. 74, 8 (2006).
9. Y. Kong and R. Parthasarathy, “Modulation of attractive colloidal interactions by lipid membrane-functionalization,” Soft Matter 5, 20272032 (2009).
10. W. B. Rogers and J. C. Crocker, “Direct measurements of DNA-mediated colloidal interactions and their quantitative modeling,” Proc. Natl. Acad. Sci. 108, 1568715692 (2011).
11. L. Faucheux, L. Bourdieu, P. Kaplan, and A. Libchaber, “Optical thermal ratchet,” Phys. Rev. Lett. 74, 15041507 (1995).
12. L. P. Faucheux, G. Stolovitzky, and A. Libchaber, “Periodic forcing of a Brownian particle,” Phys. Rev. E 51, 5239 (1995).
13. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16, 14631465 (1991).
14. R. Nambiar and J.-C. Meiners, “Fast position measurements with scanning line optical tweezers,” Opt. Lett. 27, 836838 (2002).
15. B. Tränkle, M. Speidel, and A. Rohrbach, “Interaction dynamics of two colloids in a single optical potential,” Phys. Rev. E 86, 021401 (2012).
16. P. L. Biancaniello and J. C. Crocker, “Line optical tweezers instrument for measuring nanoscale interactions and kinetics,” Rev. Sci. Instrum. 77, 113702 (2006).
17. Y. Roichman and D. G. Grier, “Projecting extended optical traps with shape-phase holography,” Opt. Lett. 31, 16751677 (2006).
18. G. T. Tietjen, Y. Kong, and R. Parthasarathy, “An efficient method for the creation of tunable optical line traps via control of gradient and scattering forces,” Opt. Exp. 16, 1034110348 (2008).
19. J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Coll. Interface Sci. 179, 298310 (1996).
20. R. Verma, J. C. Crocker, T. Lubensky, and A. Yodh, “Attractions between hard colloidal spheres in semiflexible polymer solutions,” Macromolecules 33, 177186 (2000).
21. K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5, 491505 (2008).
22. A. M. Yake, R. A. Panella, C. E. Snyder, and D. Velegol, “Fabrication of colloidal doublets by a salting out-quenching-fusing technique,” Langmuir 22, 91359141 (2006).
23. M. Polin, Y. Roichman, and D. G. Grier, “Autocalibrated colloidal interaction measurements with extended optical traps,” Phys. Rev. E 77, 051401 (2008).
24. W. B. Rogers, T. Sinno, and J. C. Crocker, “Kinetics and non-exponential binding of DNA-coated colloids,” Soft Matter 9, 64126417 (2013).

Data & Media loading...


Article metrics loading...



We describe a simple scanning-line optical tweezers instrument for measuring pair interactions between micrometer-sized colloidal particles. Our instrument combines a resonant scanning mirror and an acousto-optic modulator. The resonant scanning mirror creates a time-averaged line trap whose effective one-dimensional intensity profile, and corresponding trapping potential energy landscape can be programmed using the acousto-optic modulator. We demonstrate control over the confining potential by designing and measuring a family of one-dimensional harmonic traps. By adjusting the spring constant, we balance scattering-induced repulsive forces between a pair of trapped particles, creating a flat potential near contact that facilitates interaction measurements. We also develop a simple method for extracting the out-of-plane motion of trapped particles from their relative brightness, allowing us to resolve their relative separation to roughly 1 nm.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd