NOTICE: Scitation Maintenance Sunday, March 1, 2015.

Scitation users may experience brief connectivity issues on Sunday, March 1, 2015 between 12:00 AM and 7:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. S. Goldstein, J. Huang, C. Guo, I. P. Garraway, and O. N. Witte, “Identification of a cell of origin for human prostate cancer,” Science 329, 568571 (2010).
2. S. O. Ryan, A. M. Vlad, K. Islam, J. Gariépy, and O. J. Finn, “Tumor-associated MUC1 glycopeptide epitopes are not subject to self-tolerance and improve responses to MUC1 peptide epitopes in MUC1 transgenic mice,” Biol. Chem. 390, 611618 (2009).
3. D. A. Gimbel, H. B. Nygaard, E. E. Coffey, E. C. Gunther, J. Laurén, Z. A. Gimbel, and S. M. Strittmatter, “Memory impairment in transgenic Alzheimer mice requires cellular prion protein,” J. Neurosci. 30, 63746367 (2010).
4. L. M. Billings, S. Oddo, K. N. Green, J. L. McGaugh, and F. M. LaFerla, “Intraneuronal Aβ causes the onset of early Alzheimer's disease-related cognitive deficits in transgenic mice,” Neuron 45, 675688 (2005).
5. J. F. Aitken, K. M. Loomes, D. W. Scott, S. Reddy, A. R. Phillips, G. Prijic, C. Fernando, S. Zhang, R. Broadhurst, P. L'Huillier, and G. J. Cooper, “Tetracycline treatment retards the onset and slows the progression of diabetes in human amylin/islet amyloid polypeptide transgenic mice,” Diabetes 59, 161171 (2010).
6. A. W. Chan, G. Kukolj, A. M. Skalka, and R. D. Bremel, “Timing of DNA integration, transgenic mosaicism, and pronuclear microinjection,” Mol. Reprod. Dev. 52, 406413 (1999).<406::AID-MRD9>3.0.CO;2-P
7. K. Chida, R. Sueyoshi, and T. Kuroki, “Efficient and stable gene transfer following microinjection into nuclei of synchronized animal cells progressing from G1/S boundary to early S phase,” Biochem. Biophys. Res. Commun. 249, 849852 (1998).
8. X. Zheng, H. K. Surks, and X. Zhang, “A versatile cell contractility mapping transducer utilizing moiré-based technique,” J. Microelectromech. Syst. 19, 764773 (2010).
9. F. Caselli, P. Bisegna, and F. Maceri, “EIT-inspired microfluidic cytometer for single-cell dielectric spectroscopy,” J. Microelectromech. Syst. 19, 10291040 (2010).
10. N. Inomata, T. Mizunuma, Y. Yamanishi, and F. Arai, “Omnidirectional actuation of magnetically driven microtool for cutting of oocyte in a chip,” J. Microelectromech. Syst. 20, 383388 (2011).
11. J. S. Dai and J. Jones, “Mobility in metamorphic mechanisms of foldable/erectable kinds,” J. Mech. Des. 121, 375 (1999).
12. L. Zhang and J. S. Dai, “Reconfiguration of spatial metamorphic mechanisms,” J. Mech. Rob. 1, 01101210110128 (2009).
13. L. Zhang, J. S. Dai, and T.-L. Yang, “Reconfiguration techniques and geometric constraints of metamorphic mechanisms,” in 2009 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2009 (ASME, 2009), Vol. 7, pp. 559575.
14. D. Gan, J. Dai, and Q. Liao, “Constraint analysis on mobility change of a novel metamorphic parallel mechanism,” Mech. Mach. Theory 45, 18641876 (2010).
15. S. Li and J. S. Dai, “Structure synthesis of single-driven metamorphic mechanisms based on the augmented Assur groups,” J. Mech. Rob. 4, 031004 (2012).
16. L. Cui and J. S. Dai, “Reciprocity-based singular value decomposition for inverse kinematic analysis of the metamorphic multifingered hand,” J. Mech. Rob. 4, 034502 (2012).
17. S. E. Wilding, L. Howell, and S. P. Magelby, “Spherical lamina emergent mechanisms,” Mech. Mach. Theory 49, 187197 (2012).
18. P. S. Gollnick, S. P. Magelby, and L. L. Howell, “An introduction to multilayer lamina emergent mechanisms,” J. Mech. Des. 133, 081006 (2011).
19. J. O. Jacobsen, B. G. Winder, L. L. Howell, and S. P. Magleby, “Lamina emergent mechanisms and their basic elements,” J. Mech. Rob. 2, 011003 (2010).
20. H. C. Greenberg, M. L. Gong, S. P. Magelby, and L. L. Howell, “Identifying links between origami and compliant mechanisms,” Mech. Sci. 2, 217225 (2011).
21. L. A. Bowen, C. L. Grames, S. P. Magleby, R. J. Lang, and L. L. Howell, “A classification of action origami as systems of spherical mechanisms,” J. Mech. Des. 135, 111008 (2013).
22. J. Ryu, M. D'Amato, X. Cui, K. N. Long, H. J. Qi, and M. L. Dunn, “Photo-origami — bending and folding polymers with light,” Appl. Phys. Lett. 100, 161908 (2012).
23. J. Subirana and M. Soler-Lopez, “Cations as hydrogen bond donors: A view of electrostatic interactions in DNA,” Annu. Rev. Biophys. Biomol. Struct. 32, 2745 (2003).
24. Q. T. Aten, B. D. Jensen, S. H. Burnett, and L. L. Howell, “Electrostatic accumulation and release of DNA using a micromachined lance,” J. Microelectromech. Syst. 20, 14491461 (2011).
25. R. L. Brinster, H. Y. Chen, M. E. Trumbauer, M. K. Yagle, and R. D. Palmiter, “Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs,” Proc. Natl. Acad. Sci. U.S.A. 82, 44384442 (1985).
26. R. J. Wall, “Pronuclear microinjection,” Cloning Stem Cells 3, 209220 (2001).
27. A. Pillarisetti, M. Pekarev, A. D. Brooks, and J. P. Desai, “Evaluating the role of force feedback for biomanipulation tasks,” Proc. Symp. Haptic Interfaces Virtual Environ. Teleoperator Syst. 1118 (2006).
28. S. Zappe, M. Fish, M. Scott, and O. Solgaard, “Automated MEMS-based drosophila embryo injection system for high-throughput RNAi screens,” Lab Chip 6, 10121019 (2006).
29. J. Brachet, T. Kuusi, and S. Gothie, “Comparative study of the inductive power of nucleic acids and of cellular nucleoproteins when they are implanted or given by microinjection,” Arch. Biol. 63, 429440 (1952).
30. J. B. Buck, “A versatile microinjection and micropipetting syringe,” Rev. Sci. Instrum. 20, 676677 (1949).
31. S. Park, Y.-S. Kim, W. B. Kim, and S. Jon, “Carbon nanosyringe array as a platform for intracellular delivery,” Nano Lett. 9, 13251329 (2009).
32. A. K. Shaleka, J. T. Robinsona, E. S. Karpa, J. S. Leea, D.-R. Ahnb, M.-H. Yoona, A. Suttona, M. J. amd Rona S. Gertnera, T. S. Gujrala, G. MacBeatha, E. G. Yanga, and H. Parka, “Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 18701875 (2010).
33. C. M. Cuerrier, R. Lebel, and M. Grandbois, “Single cell transfection using plasmid decorated AFM probes,” Biochem. Biophys. Res. Commun. 355, 632636 (2007).
34. X. Chen, A. Kis, A. Zettl, and C. R. Bertozzi, “A cell nanoinjector based on carbon nanotubes,” Proc. Natl. Acad. Sci. 104, 82188222 (2007).
35. J. Carter, A. Cowen, B. Hardy, R. Mahadevan, M. Stonefield, and S. Wilcenski, PolyMUMPs Design Handbook, Revision 11 (MEMSCAP Inc., 2005).
36. B. L. Boyce, J. M. Grazier, T. E. Buchheit, and M. J. Shaw, “Strength distributions in polycrystalline silicon MEMS,” J. Microelectromech. Syst. 16, 179190 (2007).
37. R. Yeh, E. J. Kruglick, and K. S. Pister, “Surface-micromachined components for articulated microrobots,” J. Microelectromech. Syst. 5, 1017 (1996).
38. A. Friedberger and R. S. Muller, “Improved surface-micromachined hinges for fold-out structures,” J. Microelectromech. Syst. 7, 315319 (1998).
39. G. H. Teichert, Q. T. Aten, S. H. Burnett, L. L. Howell, and B. D. Jensen, “Cylindrical single-degree-of-freedom spatial mechanisms for cell restraint,” J. Mech. Rob. 4, 021011 (2012).
40. K. A. Jensen, C. P. Lusk, and L. L. Howell, “An XYZ micromanipulator with three translational degrees of freedom,” Robotica 24, 305314 (2006).
41. B. G. Winder, S. P. Magelby, and L. L. Howell, “Kinematic representations of pop-up paper mechanisms,” J. Mech. Rob. 1, 021009 (2009).
42. L. Howell, Compliant Mechanisms (Wiley, New York, 2001).
43. S. Oak, G. F. Edmiston, G. Sivakumar, and T. Dallas, “Rotating out-of-plane micromirror,” J. Microelectromech. Syst. 19, 632639 (2010).
44. Q. T. Aten, B. D. Jensen, S. Tamowski, A. M. Wilson, L. L. Howell, and S. H. Burnett, “Nanoinjection: Pronuclear DNA delivery using a charged lance,” Transgenic Res. 21, 12791290 (2012).
45. A. M. Wilson, Q. T. Aten, N. C. Toone, J. L. Black, B. D. Jensen, S. Tamowski, L. L. Howell, and S. H. Burnett, “Transgene delivery via intracellular electroporetic nanoinjection,” Transgenic Res. 22, 9931002 (2013).
46. A. Nagy, M. Gertsenstein, K. Vintersten, and R. Behringer, Manipulating the Mouse Embryo: A Laboratory Manual, 3rd ed. (Cold Spring Harbor Laboratory Press, 2003).
47. L. D. Brown, T. T. Cai, and A. DasGupta, “Interval estimation for a binomial proportion,” Statistical Science 16, 101133 (2001).

Data & Media loading...


Article metrics loading...



This paper presents a surface-micromachined microelectromechanical system nanoinjector designed to inject DNA into mouse zygotes which are ≈90 μm in diameter. The proposed injection method requires that an electrically charged, DNA coated lance be inserted into the mouse zygote. The nanoinjector's principal design requirements are (1) it must penetrate the lance into the mouse zygote without tearing the cell membranes and (2) maintain electrical connectivity between the lance and a stationary bond pad. These requirements are satisfied through a two-phase, self-reconfiguring metamorphic mechanism. In the first motion subphase a change-point six-bar mechanism elevates the lance to ≈45 μm above the substrate. In the second motion subphase, a compliant folded-beam suspension allows the lance to translate in-plane at a constant height as it penetrates the cell membranes. The viability of embryos following nanoinjection is presented as a metric for quantifying how well the nanoinjector mechanism fulfills its design requirements of penetrating the zygote without causing membrane damage. Viability studies of nearly 3000 nanoinjections resulted in 71.9% of nanoinjected zygotes progressing to the two-cell stage compared to 79.6% of untreated embryos.


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A self-reconfiguring metamorphic nanoinjector for injection into mouse zygotes