1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
/content/aip/journal/rsi/85/5/10.1063/1.4872077
1.
1. A. S. Goldstein, J. Huang, C. Guo, I. P. Garraway, and O. N. Witte, “Identification of a cell of origin for human prostate cancer,” Science 329, 568571 (2010).
http://dx.doi.org/10.1126/science.1189992
2.
2. S. O. Ryan, A. M. Vlad, K. Islam, J. Gariépy, and O. J. Finn, “Tumor-associated MUC1 glycopeptide epitopes are not subject to self-tolerance and improve responses to MUC1 peptide epitopes in MUC1 transgenic mice,” Biol. Chem. 390, 611618 (2009).
http://dx.doi.org/10.1515/BC.2009.070
3.
3. D. A. Gimbel, H. B. Nygaard, E. E. Coffey, E. C. Gunther, J. Laurén, Z. A. Gimbel, and S. M. Strittmatter, “Memory impairment in transgenic Alzheimer mice requires cellular prion protein,” J. Neurosci. 30, 63746367 (2010).
http://dx.doi.org/10.1523/JNEUROSCI.0395-10.2010
4.
4. L. M. Billings, S. Oddo, K. N. Green, J. L. McGaugh, and F. M. LaFerla, “Intraneuronal Aβ causes the onset of early Alzheimer's disease-related cognitive deficits in transgenic mice,” Neuron 45, 675688 (2005).
http://dx.doi.org/10.1016/j.neuron.2005.01.040
5.
5. J. F. Aitken, K. M. Loomes, D. W. Scott, S. Reddy, A. R. Phillips, G. Prijic, C. Fernando, S. Zhang, R. Broadhurst, P. L'Huillier, and G. J. Cooper, “Tetracycline treatment retards the onset and slows the progression of diabetes in human amylin/islet amyloid polypeptide transgenic mice,” Diabetes 59, 161171 (2010).
http://dx.doi.org/10.2337/db09-0548
6.
6. A. W. Chan, G. Kukolj, A. M. Skalka, and R. D. Bremel, “Timing of DNA integration, transgenic mosaicism, and pronuclear microinjection,” Mol. Reprod. Dev. 52, 406413 (1999).
http://dx.doi.org/10.1002/(SICI)1098-2795(199904)52:4<406::AID-MRD9>3.0.CO;2-P
7.
7. K. Chida, R. Sueyoshi, and T. Kuroki, “Efficient and stable gene transfer following microinjection into nuclei of synchronized animal cells progressing from G1/S boundary to early S phase,” Biochem. Biophys. Res. Commun. 249, 849852 (1998).
http://dx.doi.org/10.1006/bbrc.1998.9245
8.
8. X. Zheng, H. K. Surks, and X. Zhang, “A versatile cell contractility mapping transducer utilizing moiré-based technique,” J. Microelectromech. Syst. 19, 764773 (2010).
http://dx.doi.org/10.1109/JMEMS.2010.2055543
9.
9. F. Caselli, P. Bisegna, and F. Maceri, “EIT-inspired microfluidic cytometer for single-cell dielectric spectroscopy,” J. Microelectromech. Syst. 19, 10291040 (2010).
http://dx.doi.org/10.1109/JMEMS.2010.2067204
10.
10. N. Inomata, T. Mizunuma, Y. Yamanishi, and F. Arai, “Omnidirectional actuation of magnetically driven microtool for cutting of oocyte in a chip,” J. Microelectromech. Syst. 20, 383388 (2011).
http://dx.doi.org/10.1109/JMEMS.2010.2100028
11.
11. J. S. Dai and J. Jones, “Mobility in metamorphic mechanisms of foldable/erectable kinds,” J. Mech. Des. 121, 375 (1999).
http://dx.doi.org/10.1115/1.2829470
12.
12. L. Zhang and J. S. Dai, “Reconfiguration of spatial metamorphic mechanisms,” J. Mech. Rob. 1, 01101210110128 (2009).
http://dx.doi.org/10.1115/1.2963025
13.
13. L. Zhang, J. S. Dai, and T.-L. Yang, “Reconfiguration techniques and geometric constraints of metamorphic mechanisms,” in 2009 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2009 (ASME, 2009), Vol. 7, pp. 559575.
14.
14. D. Gan, J. Dai, and Q. Liao, “Constraint analysis on mobility change of a novel metamorphic parallel mechanism,” Mech. Mach. Theory 45, 18641876 (2010).
http://dx.doi.org/10.1016/j.mechmachtheory.2010.08.004
15.
15. S. Li and J. S. Dai, “Structure synthesis of single-driven metamorphic mechanisms based on the augmented Assur groups,” J. Mech. Rob. 4, 031004 (2012).
http://dx.doi.org/10.1115/1.4006741
16.
16. L. Cui and J. S. Dai, “Reciprocity-based singular value decomposition for inverse kinematic analysis of the metamorphic multifingered hand,” J. Mech. Rob. 4, 034502 (2012).
http://dx.doi.org/10.1115/1.4006187
17.
17. S. E. Wilding, L. Howell, and S. P. Magelby, “Spherical lamina emergent mechanisms,” Mech. Mach. Theory 49, 187197 (2012).
http://dx.doi.org/10.1016/j.mechmachtheory.2011.10.009
18.
18. P. S. Gollnick, S. P. Magelby, and L. L. Howell, “An introduction to multilayer lamina emergent mechanisms,” J. Mech. Des. 133, 081006 (2011).
http://dx.doi.org/10.1115/1.4004542
19.
19. J. O. Jacobsen, B. G. Winder, L. L. Howell, and S. P. Magleby, “Lamina emergent mechanisms and their basic elements,” J. Mech. Rob. 2, 011003 (2010).
http://dx.doi.org/10.1115/1.4000523
20.
20. H. C. Greenberg, M. L. Gong, S. P. Magelby, and L. L. Howell, “Identifying links between origami and compliant mechanisms,” Mech. Sci. 2, 217225 (2011).
http://dx.doi.org/10.5194/ms-2-217-2011
21.
21. L. A. Bowen, C. L. Grames, S. P. Magleby, R. J. Lang, and L. L. Howell, “A classification of action origami as systems of spherical mechanisms,” J. Mech. Des. 135, 111008 (2013).
http://dx.doi.org/10.1115/1.4025379
22.
22. J. Ryu, M. D'Amato, X. Cui, K. N. Long, H. J. Qi, and M. L. Dunn, “Photo-origami — bending and folding polymers with light,” Appl. Phys. Lett. 100, 161908 (2012).
http://dx.doi.org/10.1063/1.3700719
23.
23. J. Subirana and M. Soler-Lopez, “Cations as hydrogen bond donors: A view of electrostatic interactions in DNA,” Annu. Rev. Biophys. Biomol. Struct. 32, 2745 (2003).
http://dx.doi.org/10.1146/annurev.biophys.32.110601.141726
24.
24. Q. T. Aten, B. D. Jensen, S. H. Burnett, and L. L. Howell, “Electrostatic accumulation and release of DNA using a micromachined lance,” J. Microelectromech. Syst. 20, 14491461 (2011).
http://dx.doi.org/10.1109/JMEMS.2011.2167658
25.
25. R. L. Brinster, H. Y. Chen, M. E. Trumbauer, M. K. Yagle, and R. D. Palmiter, “Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs,” Proc. Natl. Acad. Sci. U.S.A. 82, 44384442 (1985).
http://dx.doi.org/10.1073/pnas.82.13.4438
26.
26. R. J. Wall, “Pronuclear microinjection,” Cloning Stem Cells 3, 209220 (2001).
http://dx.doi.org/10.1089/15362300152725936
27.
27. A. Pillarisetti, M. Pekarev, A. D. Brooks, and J. P. Desai, “Evaluating the role of force feedback for biomanipulation tasks,” Proc. Symp. Haptic Interfaces Virtual Environ. Teleoperator Syst. 1118 (2006).
http://dx.doi.org/10.1109/HAPTIC.2006.1627080
28.
28. S. Zappe, M. Fish, M. Scott, and O. Solgaard, “Automated MEMS-based drosophila embryo injection system for high-throughput RNAi screens,” Lab Chip 6, 10121019 (2006).
http://dx.doi.org/10.1039/b600238b
29.
29. J. Brachet, T. Kuusi, and S. Gothie, “Comparative study of the inductive power of nucleic acids and of cellular nucleoproteins when they are implanted or given by microinjection,” Arch. Biol. 63, 429440 (1952).
30.
30. J. B. Buck, “A versatile microinjection and micropipetting syringe,” Rev. Sci. Instrum. 20, 676677 (1949).
http://dx.doi.org/10.1063/1.1741648
31.
31. S. Park, Y.-S. Kim, W. B. Kim, and S. Jon, “Carbon nanosyringe array as a platform for intracellular delivery,” Nano Lett. 9, 13251329 (2009).
http://dx.doi.org/10.1021/nl802962t
32.
32. A. K. Shaleka, J. T. Robinsona, E. S. Karpa, J. S. Leea, D.-R. Ahnb, M.-H. Yoona, A. Suttona, M. J. amd Rona S. Gertnera, T. S. Gujrala, G. MacBeatha, E. G. Yanga, and H. Parka, “Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells,” Proc. Natl. Acad. Sci. U.S.A. 107, 18701875 (2010).
http://dx.doi.org/10.1073/pnas.0909350107
33.
33. C. M. Cuerrier, R. Lebel, and M. Grandbois, “Single cell transfection using plasmid decorated AFM probes,” Biochem. Biophys. Res. Commun. 355, 632636 (2007).
http://dx.doi.org/10.1016/j.bbrc.2007.01.190
34.
34. X. Chen, A. Kis, A. Zettl, and C. R. Bertozzi, “A cell nanoinjector based on carbon nanotubes,” Proc. Natl. Acad. Sci. 104, 82188222 (2007).
http://dx.doi.org/10.1073/pnas.0700567104
35.
35. J. Carter, A. Cowen, B. Hardy, R. Mahadevan, M. Stonefield, and S. Wilcenski, PolyMUMPs Design Handbook, Revision 11 (MEMSCAP Inc., 2005).
36.
36. B. L. Boyce, J. M. Grazier, T. E. Buchheit, and M. J. Shaw, “Strength distributions in polycrystalline silicon MEMS,” J. Microelectromech. Syst. 16, 179190 (2007).
http://dx.doi.org/10.1109/JMEMS.2007.892794
37.
37. R. Yeh, E. J. Kruglick, and K. S. Pister, “Surface-micromachined components for articulated microrobots,” J. Microelectromech. Syst. 5, 1017 (1996).
http://dx.doi.org/10.1109/84.485210
38.
38. A. Friedberger and R. S. Muller, “Improved surface-micromachined hinges for fold-out structures,” J. Microelectromech. Syst. 7, 315319 (1998).
http://dx.doi.org/10.1109/84.709650
39.
39. G. H. Teichert, Q. T. Aten, S. H. Burnett, L. L. Howell, and B. D. Jensen, “Cylindrical single-degree-of-freedom spatial mechanisms for cell restraint,” J. Mech. Rob. 4, 021011 (2012).
http://dx.doi.org/10.1115/1.4006189
40.
40. K. A. Jensen, C. P. Lusk, and L. L. Howell, “An XYZ micromanipulator with three translational degrees of freedom,” Robotica 24, 305314 (2006).
http://dx.doi.org/10.1017/S0263574705002134
41.
41. B. G. Winder, S. P. Magelby, and L. L. Howell, “Kinematic representations of pop-up paper mechanisms,” J. Mech. Rob. 1, 021009 (2009).
http://dx.doi.org/10.1115/1.3046128
42.
42. L. Howell, Compliant Mechanisms (Wiley, New York, 2001).
43.
43. S. Oak, G. F. Edmiston, G. Sivakumar, and T. Dallas, “Rotating out-of-plane micromirror,” J. Microelectromech. Syst. 19, 632639 (2010).
http://dx.doi.org/10.1109/JMEMS.2010.2045343
44.
44. Q. T. Aten, B. D. Jensen, S. Tamowski, A. M. Wilson, L. L. Howell, and S. H. Burnett, “Nanoinjection: Pronuclear DNA delivery using a charged lance,” Transgenic Res. 21, 12791290 (2012).
http://dx.doi.org/10.1007/s11248-012-9610-6
45.
45. A. M. Wilson, Q. T. Aten, N. C. Toone, J. L. Black, B. D. Jensen, S. Tamowski, L. L. Howell, and S. H. Burnett, “Transgene delivery via intracellular electroporetic nanoinjection,” Transgenic Res. 22, 9931002 (2013).
http://dx.doi.org/10.1007/s11248-013-9706-7
46.
46. A. Nagy, M. Gertsenstein, K. Vintersten, and R. Behringer, Manipulating the Mouse Embryo: A Laboratory Manual, 3rd ed. (Cold Spring Harbor Laboratory Press, 2003).
47.
47. L. D. Brown, T. T. Cai, and A. DasGupta, “Interval estimation for a binomial proportion,” Statistical Science 16, 101133 (2001).
http://dx.doi.org/10.1214/ss/1009213285
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/5/10.1063/1.4872077
Loading
/content/aip/journal/rsi/85/5/10.1063/1.4872077
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/85/5/10.1063/1.4872077
2014-05-13
2015-07-07

Abstract

This paper presents a surface-micromachined microelectromechanical system nanoinjector designed to inject DNA into mouse zygotes which are ≈90 μm in diameter. The proposed injection method requires that an electrically charged, DNA coated lance be inserted into the mouse zygote. The nanoinjector's principal design requirements are (1) it must penetrate the lance into the mouse zygote without tearing the cell membranes and (2) maintain electrical connectivity between the lance and a stationary bond pad. These requirements are satisfied through a two-phase, self-reconfiguring metamorphic mechanism. In the first motion subphase a change-point six-bar mechanism elevates the lance to ≈45 μm above the substrate. In the second motion subphase, a compliant folded-beam suspension allows the lance to translate in-plane at a constant height as it penetrates the cell membranes. The viability of embryos following nanoinjection is presented as a metric for quantifying how well the nanoinjector mechanism fulfills its design requirements of penetrating the zygote without causing membrane damage. Viability studies of nearly 3000 nanoinjections resulted in 71.9% of nanoinjected zygotes progressing to the two-cell stage compared to 79.6% of untreated embryos.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/85/5/1.4872077.html;jsessionid=1ba5ff2du9urj.x-aip-live-06?itemId=/content/aip/journal/rsi/85/5/10.1063/1.4872077&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A self-reconfiguring metamorphic nanoinjector for injection into mouse zygotes
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/5/10.1063/1.4872077
10.1063/1.4872077
SEARCH_EXPAND_ITEM