Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. B. J. Finlayson-Pitts and J. M. Pitts Jr., Chemistry of the Upper and Lower Atmosphere (Academic Press, San Diego, 2000).
2. P. Warneck, Chemistry of the Natural Atmosphere, 2nd ed. (Academic Press, San Diego, 2000).
3. R. E. Shetter, D. H. Stedman, and D. H. Wets, J. Air Pollut. Control Assoc. 33, 212 (1983).
4. L. J. Carpenter, K. C. Clemitshaw, R. A. Burges, S. A. Penkett, J. N. Cape, and G. G. McFayden, Atmos. Environ. 32, 3353 (1998).
5. J. Matsumoto, N. Kosugi, A. Nishiyama, R. Isozaki, Y. Sadanaga, S. Kato, H. Bandow, and Y. Kajii, Atmos. Environ. 40, 3230 (2006).
6. Y. Itano, H. Bandow, N. Takenaka, Y. Saitoh, A. Asayama, and J. Fukuyama, Sci. Total Environ. 379, 46 (2007).
7. Y. Kanaya, M. Fukuda, H. Akimoto, N. Takegawa, Y. Komazaki, Y. Yokouchi, M. Koike, and Y. Kondo, J. Geophys. Res. 113, D06301, doi:10.1029/2007JD008671 (2008).
8. Y. Sadanaga, S. Shibata, M. Hamana, N. Takenaka, and H. Bandow, Atmos. Environ. 42, 4708 (2008).
9. Y. Sadanaga, M. Sengen, N. Takenaka, and H. Bandow, Aerosol Air Qual. Res. 12, 161 (2012).
10. M. J. Bollinger, R. E. Sievers, D. W. Fahey, and F. C. Fehsenfeld, Anal. Chem. 55, 1980 (1983).
11. D. W. Fahey, C. S. Eubank, G. Hübler, and F. C. Fehsenfeld, J. Atmos. Chem. 3, 435 (1985).
12. F. C. Fehsenfeld, R. R. Dickerson, G. Hübler, W. T. Luke, L. J. Nunnermacker, E. J. Williams, J. M. Roberts, J. G. Calvert, C. M. Curran, A. C. Delany, C. S. Eubank, D. W. Fahey, A. Fried, B. W. Gandrud, A. O. Langford, P. C. Murphy, R. B. Norton, K. E. Pickering, and B. A. Ridley, J. Geophys. Res. 92, 14710, doi:10.1029/JD092iD12p14710 (1987).
13. E. J. Williams, K. Baumann, J. M. Roberts, S. B. Bertman, R. B. Norton, F. C. Fehsenfeld, S. R. Springston, L. J. Nunnermacker, L. Newman, K. Olszyna, J. Meagher, B. Hartsell, E. Edgerton, J. R. Pearson, and M. O. Rodgers, J. Geophys. Res. 103, 22261, doi:10.1029/98JD00074 (1998).
14. Y. Sadanaga, A. Yuba, J. Kawakami, N. Takenaka, M. Yamamoto, and H. Bandow, Anal. Sci. 24, 967 (2008).
15. Y. Sadanaga, H. Imabayashi, T. Suzue, H. Kimoto, T. Kimoto, N. Takenaka, and H. Bandow, Geophys. Res. Lett. 35, L21810, doi:10.1029/2008GL035557 (2008).
16. A. Yuba, Y. Sadanaga, A. Takami, S. Hatakeyama, N. Takenaka, and H. Bandow, Anal. Chem. 82, 8916 (2010).
17. M. Steinbacher, C. Zellweger, B. Schwarzenbach, S. Bugmann, B. Buchmann, C. Ordóñez, A. S. H. Prevot, and C. Hueglin, J. Geophys. Res. 112, D11307, doi:10.1029/2006JD007971 (2007).
18. D. D. Parrish, C. H. Hahn, D. W. Fahey, E. J. Williams, M. J. Bollinger, G. Hübler, M. P. Buhr, P. C. Murphy, M. Trainer, E. Y. Hsie, S. C. Liu, and F. C. Fehsenfeld, J. Geophys. Res. 95, 1817, doi:10.1029/JD095iD02p01817 (1990).
19. T. B. Ryerson, E. J. Williams, and F. C. Fehsenfeld, J. Geophys. Res. 105, 26447, doi:10.1029/2000JD900389 (2000).
20. Y. Sadanaga, Y. Fukumori, T. Kobashi, M. Nagata, N. Takenaka, and H. Bandow, Anal. Chem. 82, 9234 (2010).
21. J. Matsumoto, J. Hirokawa, H. Akimoto, and Y. Kajii, Atmos. Environ. 35, 2803 (2001).
22. D. A. Day, P. J. Wooldridge, M. B. Dillon, J. A. Thornton, and R. C. Cohen, J. Geophys. Res. 107, 4046, doi:10.1029/2001JD000779 (2002).
23. Y. Sadanaga, J. Matsumoto, K. Sakurai, R. Isozaki, K. Shungo, T. Nomaguchi, H. Bandow, and Y. Kajii, Rev. Sci. Instrum. 75, 864 (2004).
24. P. L. Kebabian, S. C. Herndon, and A. Freedman, Anal. Chem. 77, 724 (2005).
25. P. L. Kebabian, W. A. Robinson, and A. Freedman, Rev. Sci. Instrum. 78, 063102 (2007).
26. P. L. Kebabian, E. C. Wood, S. C. Herndon, and A. Freedman, Environ. Sci. Technol. 42, 6040 (2008).
27. Y. Matsumi, F. Taketani, K. Takahashi, T. Nakayama, M. Kawai, and Y. Miyao, Appl. Opt. 49, 3762 (2010).

Data & Media loading...


Article metrics loading...



An instrument for measuring atmospheric nitrogen dioxide has been developed by a light-emitting diode induced fluorescence (LED-IF) technique. Air was introduced into a fluorescence detection cell. A pulsed blue light LED with a peak wavelength of 430 nm was irradiated to excite NO molecules in this cell. Fluorescence emitted from excited NO molecules was detected by a dynode-gated photomultiplier tube. The current detection limit of the LED-IF instrument was estimated to be 7.0 and 0.91 ppbv (parts per billion by volume) at 1-min and 1-h integration times, respectively, with a signal to noise ratio of 2. This result indicates that this LED-IF instrument can measure sufficiently precise 1-h values of NO concentrations in the urban atmosphere. An NO test observation and an intercomparison of the LED-IF instrument with an NO measurement system based on a photolytic converter/NO-O chemiluminescence method were performed in the urban atmosphere. Concentration differences between the two methods were within ±25% for about 90% of the data. It has been demonstrated by these observations that NO concentrations can be observed in the urban areas using the LED-IF instrument.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd