Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/85/6/10.1063/1.4884516
1.
1. U. Megerle, I. Pugliesi, C. Schriever, C. F. Sailer, and E. Riedle, Appl. Phys. B 96, 215 (2009).
http://dx.doi.org/10.1007/s00340-009-3610-0
2.
2. G. M. Greetham, P. Burgos, Q. A. Cao, I. P. Clark, P. S. Codd, R. C. Farrow, M. W. George, M. Kogimtzis, P. Matousek, A. W. Parker, M. R. Pollard, D. A. Robinson, Z. J. Xin, and M. Towrie, Appl. Spectrosc. 64, 1311 (2010).
http://dx.doi.org/10.1366/000370210793561673
3.
3. S. Wold and M. Sjostrom, Chemometrics Intell. Lab. Sys. 44, 3 (1998).
http://dx.doi.org/10.1016/S0169-7439(98)00075-6
4.
4. I. H. M. van Stokkum, D. S. Larsen, and R. van Grondelle, Biochim. Biophys. Acta-Bioenerg. 1657, 82 (2004).
http://dx.doi.org/10.1016/j.bbabio.2004.04.011
5.
5. J. M. Beechem, M. Ameloot, and L. Brand, Anal. Instrum. 14, 379 (1985).
http://dx.doi.org/10.1080/10739148508543585
6.
6. C. J. Rowlands and S. R. Elliott, J. Raman Spectrosc. 42, 1761 (2011).
http://dx.doi.org/10.1002/jrs.2936
7.
7. C. Ruckebusch and L. Blanchet, Anal. Chim. Acta 765, 28 (2013).
http://dx.doi.org/10.1016/j.aca.2012.12.028
8.
8. M. Defernez and E. K. Kemsley, Trac-Trends Anal. Chem. 16, 216 (1997).
http://dx.doi.org/10.1016/S0165-9936(97)00015-0
9.
9. C. Ruckebusch, S. Aloise, L. Blanchet, J. P. Huvenne, and G. Buntinx, Chemometrics Intell. Lab. Syst. 91, 17 (2008).
http://dx.doi.org/10.1016/j.chemolab.2007.05.007
10.
10. M. Terazima, Chem. Phys. Lett. 230, 87 (1994).
http://dx.doi.org/10.1016/0009-2614(94)01126-5
11.
11. M. Kopczynski, T. Lenzer, K. Oum, J. Seehusen, M. T. Seidel, and V. G. Ushakov, Phys. Chem. Chem. Phys. 7, 2793 (2005).
http://dx.doi.org/10.1039/b506574g
12.
12. C. H. B. Cruz, P. C. Becker, R. L. Fork, and C. V. Shank, Opt. Lett. 13, 123 (1988).
http://dx.doi.org/10.1364/OL.13.000123
13.
13. C. G. Elles, C. A. Rivera, Y. Zhang, P. A. Pieniazek, and S. E. Bradforth, J. Chem. Phys. 130, 084501 (2009).
http://dx.doi.org/10.1063/1.3078336
14.
14. I. Walmsley, L. Waxer, and C. Dorrer, Rev. Sci. Instrum. 72, 1 (2001).
http://dx.doi.org/10.1063/1.1330575
15.
15. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, 2002).
16.
16. D. W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963).
http://dx.doi.org/10.1137/0111030
17.
17. S. Roweis, Levenberg-Marquardt Optimization (tutorial) (www.cs.nyu.edu/~roweis/notes/lm.pdf).
18.
18. A. C. Crowther, S. L. Carrier, T. J. Preston, and F. F. Crim, J. Phys. Chem. A 112, 12081 (2008).
http://dx.doi.org/10.1021/jp8064079
19.
19. R. A. Rose, S. J. Greaves, T. A. A. Oliver, I. P. Clark, G. M. Greetham, A. W. Parker, M. Towrie, and A. J. Orr-Ewing, J. Chem. Phys. 134, 244503 (2011).
http://dx.doi.org/10.1063/1.3603966
20.
20. S. J. Greaves, R. A. Rose, T. A. A. Oliver, D. R. Glowacki, M. N. R. Ashfold, J. N. Harvey, I. P. Clark, G. M. Greetham, A. W. Parker, M. Towrie, and A. J. Orr-Ewing, Science 331, 1423 (2011).
http://dx.doi.org/10.1126/science.1197796
21.
21. M. Lorenc, M. Ziolek, R. Naskrecki, J. Karolczak, J. Kubicki, and A. Maciejewski, Appl. Phys. B 74, 19 (2002).
http://dx.doi.org/10.1007/s003400100750
22.
22. M. P. Grubb, AKITA Software Package (2014).
23.
23. R. Spesyvtsev, Ph.D. thesis, University College London, 2013.
24.
24.See supplemental material at http://dx.doi.org/10.1063/1.4884516 for the animation of the time-evolving decomposed spectrum. [Supplementary Material]
25.
25.The source code and .exe file can be downloaded from www.bristoldynamics.com/resources, free of charge.
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/6/10.1063/1.4884516
Loading
/content/aip/journal/rsi/85/6/10.1063/1.4884516
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/85/6/10.1063/1.4884516
2014-06-26
2016-09-28

Abstract

Extracting meaningful kinetic traces from time-resolved absorption spectra is a non-trivial task, particularly for solution phase spectra where solvent interactions can substantially broaden and shift the transition frequencies. Typically, each spectrum is composed of signal from a number of molecular species (e.g., excited states, intermediate complexes, product species) with overlapping spectral features. Additionally, the profiles of these spectral features may evolve in time (i.e., signal nonlinearity), further complicating the decomposition process. Here, we present a new program for decomposing mixed transient spectra into their individual component spectra and extracting the corresponding kinetic traces: KOALA (Kinetics Observed After Light Absorption). The software combines spectral target analysis with brute-force linear least squares fitting, which is computationally efficient because of the small nonlinear parameter space of most spectral features. Within, we demonstrate the application of KOALA to two sets of experimental transient absorption spectra with multiple mixed spectral components. Although designed for decomposing solution-phase transient absorption data, KOALA may in principle be applied to any time-evolving spectra with multiple components.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/85/6/1.4884516.html;jsessionid=HDSJZFyzwkKklzQhoQQNuppe.x-aip-live-03?itemId=/content/aip/journal/rsi/85/6/10.1063/1.4884516&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/85/6/10.1063/1.4884516&pageURL=http://scitation.aip.org/content/aip/journal/rsi/85/6/10.1063/1.4884516'
Right1,Right2,Right3,