1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Experimental measurements and noise analysis of a cryogenic radiometer
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/85/7/10.1063/1.4883191
1.
1. R. W. Boyd, Radiometry and the Detection of Optical Radiation (John Wiley and Sons, 1983).
2.
2. S. P. Langley, Nature (London) 25, 14 (1881).
http://dx.doi.org/10.1038/025014a0
3.
3. C. Enss and D. McCammon, J. Low Temp. Phys. 151, 5 (2008).
http://dx.doi.org/10.1007/s10909-007-9611-7
4.
4. G. C. Hilton, “Low temperature detectors: Principles and applications,” AIP Conf. Proc. 1185, 35 (2009).
http://dx.doi.org/10.1063/1.3292362
5.
5. F. Simon, Nature (London) 135, 763 (1935).
http://dx.doi.org/10.1038/135763a0
6.
6. M. A. Dobbs et al., Rev. Sci. Instrum. 83, 073113 (2012).
http://dx.doi.org/10.1063/1.4737629
7.
7. M. Galeazzi, IEEE Trans. Appl. Supercond. 21, 267 (2011).
http://dx.doi.org/10.1109/TASC.2010.2091243
8.
8. S. I. Woods, S. M. Carr, T. M. Jung, A. C. Carter, and R. U. Datla, J. Appl. Phys. 108, 024505 (2010).
http://dx.doi.org/10.1063/1.3456539
9.
9. D. Goldie et al., J. Appl. Phys. 103, 084509 (2008).
http://dx.doi.org/10.1063/1.2909981
10.
10. B. Cabrera, J. Low Temp. Phys. 151, 82 (2008).
http://dx.doi.org/10.1007/s10909-007-9632-2
11.
11. F. Giazotto et al., Rev. Mod. Phys. 78, 217 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.217
12.
12. K. D. Irwin and G. C. Hilton, “Transition-edge sensors,” in Cryogenic Particle Detection, edited by C. Enss (Springer-Verlag, 2005), Vol. 99, p. 63149.
13.
13. D. McCammon, “Thermal equilibrium calorimeters - An introduction,” in Cryogenic Particle Detection, edited by C. Enss (Springer-Verlag, 2005), Vol. 99, pp. 134.
14.
14. P. L. Richards, J. Appl. Phys. 76, 1 (1994).
http://dx.doi.org/10.1063/1.357128
15.
15. K. Angstrom, Phys. Rev. 1, 365 (1894).
http://dx.doi.org/10.1103/PhysRevSeriesI.1.365
16.
16. F. Kurlbaum, Die Thaetigkeit der Physikalisch-Technischen Reichsanstalt in den Jahren (Physikalisch-Technischen Reichsanstalt (PTR), Braunschweig, Federal Republic of Germany, 1891), Vol. 6.
17.
17. F. Hengstberger, Absolute Radiometry (Academic Press, Inc., San Diego, CA, 1989).
18.
18. R. U. Datla, K. Stock, A. C. Parr, C. C. Hoyt, P. J. Miller, and P. V. Foukal, Appl. Opt. 31, 7219 (1992).
http://dx.doi.org/10.1364/AO.31.007219
19.
19. A. C. Carter, S. R. Lorentz, T. M. Jung, and R. U. Datla, Appl. Opt. 44, 871 (2005).
http://dx.doi.org/10.1364/AO.44.000871
20.
20. J. A. Fedchak, A. C. Carter, and R. U. Datla, J. Res. Natl. Inst. Standards Technol. 111, 325 (2006).
http://dx.doi.org/10.6028/jres.111.024
21.
21. J. M. Houston and J. P. Rice, Metrologia 43, S31 (2006).
http://dx.doi.org/10.1088/0026-1394/43/2/S07
22.
22. C. D. Reintsema, J. A. Koch, and E. N. Grossman, Rev. Sci. Instrum. 69, 152 (1998).
http://dx.doi.org/10.1063/1.1148522
23.
23. J. P. Rice, S. R. Lorentz, R. U. Datla, L. R. Vale, D. A. Rudman, M. L. C. Sing, and D. Robbes, Metrologia 35, 289 (1998).
http://dx.doi.org/10.1088/0026-1394/35/4/13
24.
24. Z. M. Zhang, S. R. Lorentz, J. P. Rice, and R. U. Datla, Metrologia 35, 511 (1998).
http://dx.doi.org/10.1088/0026-1394/35/4/52
25.
25. Z. M. Zhang, R. U. Datla, S. R. Lorentz, and H. C. Tang, Trans. ASME - J. Heat Transfer 116, 993 (1994).
http://dx.doi.org/10.1115/1.2911476
26.
26. S. R. Lorentz and R. U. Datla, Metrologia 30, 341 (1993).
http://dx.doi.org/10.1088/0026-1394/30/4/022
27.
27. N. A. Tomlin, J. H. Lehman, and S. Nam, Opt. Lett. 37, 2346 (2012).
http://dx.doi.org/10.1364/OL.37.002346
28.
28. J. Y. Cheung et al., Opt. Express 19, 20347 (2011).
http://dx.doi.org/10.1364/OE.19.020347
29.
29. B. Sanguinetti et al., Phys. Rev. Lett. 105, 080503 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.080503
30.
30. S. V. Polyakov and A. L. Migdall, J. Mod. Opt. 56, 1045 (2009).
http://dx.doi.org/10.1080/09500340902919477
31.
31. S. I. Woods, S. M. Carr, A. C. Carter, T. M. Jung, and R. U. Datla, Proc. SPIE 7742, 77421P (2010).
http://dx.doi.org/10.1117/12.857911
32.
32. A. C. Carter, R. U. Datla, S. I. Woods, and T. M. Jung, Proc. SPIE 7021, 70210S (2008).
http://dx.doi.org/10.1117/12.789845
33.
33. A. C. Carter, S. I. Woods, S. M. Carr, T. M. Jung, and R. U. Datla, Metrologia 46, S146 (2009).
http://dx.doi.org/10.1088/0026-1394/46/4/S02
34.
34. S. M. Carr, S. I. Woods, T. M. Jung, A. C. Carter, and R. U. Datla, Proc. SPIE 7298, 72983Y (2009).
http://dx.doi.org/10.1117/12.820290
35.
35.Identification of particular manufacturers in this paper does not imply endorsement by the National Institute of Standards and Technology (NIST).
36.
36.LakeShore germanium resistance temperature sensor model GR-200A-2500-CD-1.4B. Technical specifications are available at http://www.lakeshore.com.
37.
37.The polyimide tubing used for the thermal link was manufactured by RiverTech Medical, LLC. The base material is Pyre-M.L. RC5019 Wire Enamel, which is 15%-16% Polyamic Acid of Pyromellitic Dianhydride/4,4-Oxydianiline, from Industrial Summit Technology Corporation (www.istusa.com).
38.
38. B. N. Taylor and C. E. Kuyatt, National Institute of Standards and Technology (NIST) Technical Note 1297 (NIST, 1994).
39.
39.The equivalent noise bandwidth for the excitation circuit is taken as BH = (2Tint)−1 = 3 Hz, where Tint is the integration time from the Agilent 3458A Multimeter User's Guide, 4th ed., 2000.
40.
40.The equivalent noise bandwidth for the ACRB is BG = 0.72 Hz, as discussed in the document entitled “Analytical model of the analog filter in the 370” from LakeShore Cryotronics. An excitation frequency of 13.7 Hz is used as the reference frequency in the phase-sensitive detection of the resistance.
41.
41. H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).
http://dx.doi.org/10.1103/PhysRev.83.34
42.
42. F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965).
43.
43. J. C. Mather, Appl. Opt. 21, 1125 (1982).
http://dx.doi.org/10.1364/AO.21.001125
44.
44. J. B. Johnson, Phys. Rev. 32, 97 (1928).
http://dx.doi.org/10.1103/PhysRev.32.97
45.
45. H. Nyquist, Phys. Rev. 32, 110 (1928).
http://dx.doi.org/10.1103/PhysRev.32.110
46.
46.The current noise measured in closed-loop operation was always greater than the current noise measured in open-loop operation. Thus, although closed-loop operation enables greater control compared to open-loop operation, it may necessarily introduce greater noise. The choice of operation mode and the compromise between control and noise will depend on the timescale of the desired measurement.
47.
47. J. E. Lukens, R. J. Warburton, and W. W. Webb, Phys. Rev. Lett. 25, 1180 (1970).
http://dx.doi.org/10.1103/PhysRevLett.25.1180
48.
48.See, for example, commercially available options at http://www.hypres.com
49.
49. G. J. Kahan, R. B. DeLano, A. E. Brennemann, and R. T. C. Tsui, “Superconducting tin films of low residual resistivity,” IBM J. Res. Development 4, 173 (1960).
http://dx.doi.org/10.1147/rd.42.0173
50.
50. R. S. Newbower, M. R. Beasley, and M. Tinkham, Phys. Rev. B 5, 864 (1972).
http://dx.doi.org/10.1103/PhysRevB.5.864
51.
51.We developed a process to microfabricate tin thin-film meander-line SC-TES on a polyimide substrate using photolithography, magnetron sputtering, and argon ion milling to minimize edge effects (see Ref. 49). The use of a flexible substrate allows the device to be wrapped around the neck of the ACR receiver in Fig. 1(a).
52.
52.The stated experimental value of G from this work was obtained at a temperature of 1.885 K. The experimental values of (δV/δT) and from Ref. 8 were obtained at a temperature of 3.58 K. The quantity (δV/δT) will increase with decreasing temperature, while the quantity is nearly independent of temperature, resulting in a value of NEPMeissner at 1.885 K that is even smaller than the value calculated in the text.
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/7/10.1063/1.4883191
Loading
/content/aip/journal/rsi/85/7/10.1063/1.4883191
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/85/7/10.1063/1.4883191
2014-07-10
2014-07-26

Abstract

A cryogenic radiometer device, intended for use as part of an electrical-substitution radiometer, was measured at low temperature. The device consists of a receiver cavity mechanically and thermally connected to a temperature-controlled stage through a thin-walled polyimide tube which serves as a weak thermal link. With the temperature difference between the receiver and the stage measured in millikelvin and the electrical power measured in picowatts, the measured responsivity was 4700 K/mW and the measured thermal time constant was 14 s at a stage temperature of 1.885 K. Noise analysis in terms of Noise Equivalent Power (NEP) was used to quantify the various fundamental and technical noise contributions, including phonon noise and Johnson-Nyquist noise. The noise analysis clarifies the path toward a cryogenic radiometer with a noise floor limited by fundamental phonon noise, where the magnitude of the phonon NEP is 6.5 for the measured experimental parameters.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/85/7/1.4883191.html;jsessionid=4b8p9uim3fqb9.x-aip-live-02?itemId=/content/aip/journal/rsi/85/7/10.1063/1.4883191&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Experimental measurements and noise analysis of a cryogenic radiometer
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/7/10.1063/1.4883191
10.1063/1.4883191
SEARCH_EXPAND_ITEM