1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/85/7/10.1063/1.4884641
1.
1. J. Sarvas, Phys. Med. Biol. 32(1), 1122 (1987).
http://dx.doi.org/10.1088/0031-9155/32/1/004
2.
2. X. Wang, M. Q. H. Meng, and Y. Chan, Proceedings of the 2004 IEEE International Conference on Information Acquisition (IEEE, 2004), pp. 524526.
3.
3. H. R. Merwa, P. Brunner, A. MSIsner, K. Hollaus, and H. Scharfetter, Physiol. Meas. 27, S249S259 (2006).
http://dx.doi.org/10.1088/0967-3334/27/5/S21
4.
4. S. Takaya and K. Miya, J. Mater. Process. Technol. 161, 6674 (2005).
http://dx.doi.org/10.1016/j.jmatprotec.2004.07.017
5.
5. K. Kobayashi, Y. Uchikawa, T. Simizu, K. Nakai et al., IEEE Trans. Magn. 41(10), 41524154 (2005).
http://dx.doi.org/10.1109/TMAG.2005.854851
6.
6. F. P. De Lange, G. Kalkman, P. Hagoort, J. W. M. Vander Meer, and I. Toni, Neuroimage 26(3), 777781 (2005).
http://dx.doi.org/10.1016/j.neuroimage.2005.02.037
7.
7. B. Tournerie and M. Chouteau, Phys. Earth Planet. Inter. 150, 197212, (2005).
http://dx.doi.org/10.1016/j.pepi.2004.08.028
8.
8. F. Baudenbacher, N. T. Peters, P. Baudenbacher, and J. P. Wikswo, Physica C 368, 2431 (2002).
http://dx.doi.org/10.1016/S0921-4534(01)01134-0
9.
9. R. Madabhushi, R. D. Gomez, E. R. Burke, and I. D. Mayergoyz, IEEE Trans. Magn. 32(5), 41474149 (1996).
http://dx.doi.org/10.1109/20.539322
10.
10. A. Abedi, J. J. Fellenstein, A. J. Lucas, and J. P. Wikswo Jr., Rev. Sci. Instrum. 70(12), 46404651 (1999).
http://dx.doi.org/10.1063/1.1150126
11.
11. D. Davidović, S. Kumar, D. H. Reich, J. Siegel, S. B. Field, R. C. Tiberio, R. Hey, and K. Ploog, Phys. Rev. Lett. 76, 815 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.815
12.
12. A. Oral, S. J. Bending, and M. Henini, Appl. Phys. Lett. 69, 1324 (1996).
http://dx.doi.org/10.1063/1.117582
13.
13. A. Sandhu, K. Kurosawa, M. Dede, and A. Oral, Jpn. J. Appl. Phys. 43(2), 777778 (2004).
http://dx.doi.org/10.1143/JJAP.43.777
14.
14. M.-H. Phan and H.-X. Peng, Prog. Mater. Sci. 53, 323420 (2008).
http://dx.doi.org/10.1016/j.pmatsci.2007.05.003
15.
15. R. Hamia, C. Cordier, S. Saez, and C. Dolabdjian, Sens. Lett. 7, 437441 (2009).
http://dx.doi.org/10.1166/sl.2009.1045
16.
16. S. Tumanski and M. Stabrowski, Meas. Sci. Technol. 9, 488495, (1998).
http://dx.doi.org/10.1088/0957-0233/9/3/025
17.
17. S. Tumanski, McGraw-Hill 2000 Yearbook of Science and Technology (McGraw-Hill, New York, 1999), pp. 242244.
18.
18. A. Michalski, “Magnetovision [magnetic field scanning system],” Instrum. Meas. Mag., IEEE 5(3), 6669 (2002).
http://dx.doi.org/10.1109/MIM.2002.1028379
19.
19. D. C. Leitão, J. Borme, A. Orozco, S. Cardoso, and P. P. Freitas, “Magnetoresistive sensors for surface scanning,” in Giant Magnetoresistance (GMR) Sensors (Springer, Berlin/Heidelberg, 2013).
20.
20. J. P. Wikswo Jr., Med. Phys. 7(4), 297306 (1980).
http://dx.doi.org/10.1118/1.594710
21.
21. J. P. Wikswo Jr., IEEE Trans. Appl. Supercond. 5(2), 74120 (1995).
http://dx.doi.org/10.1109/77.402511
22.
22. B. He, D. Yao, and D. Wu, “Imaging brain electrical activity,” in Advances in Electromagnetic Fields in Living Systems (Springer, New York, 2000), pp. 73119.
23.
23. D. J. Mapps, Sens. Actuators, A 106, 321325, (2003).
http://dx.doi.org/10.1016/S0924-4247(03)00193-6
24.
24. L. A. Bradshaw, J. K. Ladipo, D. J. Staton et al., IEEE Trans. Biomed. Eng. 46(8), 959970 (1999).
http://dx.doi.org/10.1109/10.775406
25.
25. M. Ziolkowski, J. Haueisen, and U. Leder, IEEE Trans. Biomed. Eng. 49(11), 13791384 (2002).
http://dx.doi.org/10.1109/TBME.2002.804580
26.
26. P. Rice, S. E. Russek, and B. Haines, IEEE Trans. Magn. 32(5), 41334137 (1996).
http://dx.doi.org/10.1109/20.539318
27.
27. J. Hori and B. He, Ann. Biomed. Eng. 29, 436445 (2001).
http://dx.doi.org/10.1114/1.1366674
28.
28. I. M. Thomas, T. C. Moyer, and J. P. Wikswo Jr., Geophys. Res. Lett. 19(21), 21392142, doi:10.1029/92GL02322 (1992).
http://dx.doi.org/10.1029/92GL02322
29.
29. O. Portniaguine and M. S. Zhdanov, Geophysics 67(5), 15321541 (2002).
http://dx.doi.org/10.1190/1.1512749
30.
30. Y. Li and D. Oldenburg, Geophysics 61(2), 394408 (1996).
http://dx.doi.org/10.1190/1.1443968
31.
31. W. G. Jenks, S. H. Sadeghi, and J. P. Wikswo Jr., J. Phys. D: Appl. Phys. 30, 293323 (1997).
http://dx.doi.org/10.1088/0022-3727/30/3/002
32.
32. V. Pizzella, S. de la Penna, C. Del Gratta, and G. L. Romani, Supercond. Sci. Technol. 14, R79R114 (2001).
http://dx.doi.org/10.1088/0953-2048/14/7/201
33.
33. A. Abedi, J. J. Fellenstein, A. J. Lucas, and J. P. Wikswo Jr., Rev. Sci. Instrum. 70(12), 4640 (1999).
http://dx.doi.org/10.1063/1.1150126
34.
34. R. Fenici, D. Brisinda, J. Nenonen, and P. Fenici, PACE 26, 42630 (2003).
http://dx.doi.org/10.1046/j.1460-9592.2003.00063.x
35.
35. J. P. Wikswo Jr., Y. Ma, N. G. Sepúlveda, S. Tan, and A. Lauder, IEEE Trans. Appl. Supercond. 3, 19952002 (1993).
http://dx.doi.org/10.1109/77.233464
36.
36. J. R. Kirtley and J. P. Wikswo Jr., Annu. Rev. Mater. Sci. 29, 117 (1999).
http://dx.doi.org/10.1146/annurev.matsci.29.1.117
37.
37. K. Tsukada, M. Yoshioka, T. Kiwa, and Y. Hirano, NDT & E International 44(1), 101105 (2011).
http://dx.doi.org/10.1016/j.ndteint.2010.09.012
38.
38. M. Moreira, L. O. Murta, and O. Baffa, Rev. Sci. Instrum. 71(6), 2532 (2000).
http://dx.doi.org/10.1063/1.1150666
39.
39. M. E. Cano, T. Córdova, J. C. Martinez, J. B. Alvarado, and M. Sosa, Rev. Sci. Instrum. 76, 086106 (2005).
http://dx.doi.org/10.1063/1.2008007
40.
40. M. E. Cano, A. H. Pacheco, T. Cordova, E. E. Mazon, and A. Barrera, Rev. Sci. Instrum. 83, 033705 (2012).
http://dx.doi.org/10.1063/1.3694002
41.
41. M. Bick, K. Sternickel, G. Panaitov, A. Effern et al., IEEE Trans. Appl. Supercond. 11(2), 673 (2001).
http://dx.doi.org/10.1109/77.919434
42.
42. J. Lenz and A. S. Edelstein, IEEE Sens. J. 6(3), 631649 (2006).
http://dx.doi.org/10.1109/JSEN.2006.874493
43.
43. P. Ripka, M. Tondra, J. Stokes, and R. Beech, Sens. Actuators, A 76(1), 225230 (1999).
http://dx.doi.org/10.1016/S0924-4247(99)00034-5
44.
44. S. Tan, Y. P. Ma, I. M. Thomas, and J. P. Wikswo Jr., IEEE Trans. Magn. 32(1), 230234 (1996).
http://dx.doi.org/10.1109/20.477575
45.
45. N. G. Sepúlveda, I. M. Thomas, and J. P. Wikswo Jr., IEEE Trans. Magn. 30(6), 50625069 (1994).
http://dx.doi.org/10.1109/20.334296
46.
46. R. J. Roth, N. G. Sepúlveda, and J. P. Wikswo, J. Appl. Phys. 65(1), 361 (1989).
http://dx.doi.org/10.1063/1.342549
47.
47. P. C. Hansen, Numer. Algorithms 29, 323378 (2002).
http://dx.doi.org/10.1023/A:1015222829062
48.
48. R. C. Puetter, T. R. Gosnell and A. Yahil, Annu. Rev. Astron. Astrophys. 43, 13994 (2005).
http://dx.doi.org/10.1146/annurev.astro.43.112904.104850
49.
49. A. A. Carneiro, O. Baffa, and R. B. Oliveira, Phys. Med. Biol. 44, 16911697 (1999).
http://dx.doi.org/10.1088/0031-9155/44/7/309
50.
50. J. A. Leyva, A. A. O. Carneiro, L. O. Murta, and O. Baffa, AIP Conf. Proc. 854, 167169 (2006).
http://dx.doi.org/10.1063/1.2356436
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/7/10.1063/1.4884641
Loading
/content/aip/journal/rsi/85/7/10.1063/1.4884641
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/85/7/10.1063/1.4884641
2014-07-03
2015-05-28

Abstract

A system for imaging magnetic surfaces using a magnetoresistive sensor array is developed. The experimental setup is composed of a linear array of 12 sensors uniformly spaced, with sensitivity of 150 pT*Hz−1/2 at 1 Hz, and it is able to scan an area of (16 × 18) cm2 from a separation of 0.8 cm of the sources with a resolution of 0.3 cm. Moreover, the point spread function of the multi-sensor system is also studied, in order to characterize its transference function and to improve the quality in the restoration of images. Furthermore, the images are generated by mapping the response of the sensors due to the presence of phantoms constructed of iron oxide, which are magnetized by a pulse of 80 mT. The magnetized phantoms are linearly scanned through the sensor array and the remanent magnetic field is acquired and displayed in gray levels using a PC. The images of the magnetic sources are reconstructed using two-dimensional generalized parametric Wiener filtering. Our results exhibit a very good capability to determine the spatial distribution of magnetic field sources, which produce magnetic fields of low intensity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/85/7/1.4884641.html;jsessionid=82p7jbskc78mn.x-aip-live-02?itemId=/content/aip/journal/rsi/85/7/10.1063/1.4884641&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Reconstruction of magnetic source images using the Wiener filter and a multichannel magnetic imaging system
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/7/10.1063/1.4884641
10.1063/1.4884641
SEARCH_EXPAND_ITEM