1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Neutron resonance spin flippers: Static coils manufactured by electrical discharge machining
Rent:
Rent this article for
Access full text Article
    + View Affiliations - Hide Affiliations
    Affiliations:
    1 Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
    2 Physik-Department E21, Technische Universität München, 85748 Garching, Germany
    3 Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
    a) Also at Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, Lichtenbergstr. 1, 85747 Garching, Germany.
    Rev. Sci. Instrum. 85, 073902 (2014); http://dx.doi.org/10.1063/1.4886383
/content/aip/journal/rsi/85/7/10.1063/1.4886383
1.
1. F. Mezei, Z. Phys. 255, 146 (1972).
http://dx.doi.org/10.1007/BF01394523
2.
2. R. Gähler and R. Golub, Z. Phys. B: Condens. Matter 65, 269 (1987).
http://dx.doi.org/10.1007/BF01303712
3.
3. R. Gähler, R. Golub, and T. Keller, Phys. B: Condens. Matter 180–181(Pt. 2), 899 (1992).
http://dx.doi.org/10.1016/0921-4526(92)90503-K
4.
4. N. F. Ramsey, Phys. Rev. 78, 695 (1950).
http://dx.doi.org/10.1103/PhysRev.78.695
5.
5. T. Keller, R. Golub, F. Mezei, and R. Gähler, Phys. B: Condens. Matter 234–236, 1126 (1997).
http://dx.doi.org/10.1016/S0921-4526(97)00131-2
6.
6. M. Köppe, M. Bleuel, R. Gähler, R. Golub, P. Hank, T. Keller, S. Longeville, U. Rauch, and J. Wuttke, Phys. B: Condens. Matter 266, 75 (1999).
http://dx.doi.org/10.1016/S0921-4526(98)01496-3
7.
7. S. Klimko, C. Stadler, P. Böni, R. Currat, F. Demmel, B. Fåk, R. Gähler, F. Mezei, and B. Toperverg, Phys. B: Condens. Matter 335, 188 (2003).
http://dx.doi.org/10.1016/S0921-4526(03)00234-5
8.
8. W. Häussler, U. Schmidt, and D. Dubbers, Phys. B: Condens. Matter 350, E799 (2004).
http://dx.doi.org/10.1016/j.physb.2004.03.208
9.
9. Y. Kawabata, M. Hino, M. Kitaguchi, H. Hayashida, S. Tasaki, T. Ebisawa, D. Yamazaki, R. Maruyama, H. Seto, M. Nagao, and T. Kanaya, Phys. B: Condens. Matter 385–386(Pt. 2), 1122 (2006).
http://dx.doi.org/10.1016/j.physb.2006.05.387
10.
10. W. Häussler, B. Gohla-Neudecker, R. Schwikowski, D. Streibl, and P. Böni, Phys. B: Condens. Matter 397, 112 (2007).
http://dx.doi.org/10.1016/j.physb.2007.02.086
11.
11. T. Keller, P. Aynajian, S. Bayrakci, K. Buchner, K. Habicht, H. Klann, M. Ohl, and B. Keimer, Neutron News 18, 16 (2007).
http://dx.doi.org/10.1080/10448630701328372
12.
12. T. Keller, “Höchstauflösende Neutronenspektrometer auf der Basis von Spinflippern - neue Varianten des Spinecho-Prinzips,” Ph.D. thesis (Technische Universität München, 1993).
13.
13. S. Klimko, “ZETA, A zero field spin echo method for very high resolution study of elementary excitations and first application,” Ph.D. thesis (Technische Univerität, Berlin, 2003).
14.
14. S. Prokudaylo, R. Gähler, T. Keller, M. Bleuel, M. Axtner, and A. Selvachev, Appl. Phys. A 74, s317 (2002).
http://dx.doi.org/10.1007/s003390201907
15.
15. M. Bleuel, “Aufbau des Resonanz-Spinecho-Spektrometers RESEDA am FRM-II,” Ph.D. thesis (Technische Universität, München, 2003).
16.
16. H. Hayashida, M. Kitaguchi, M. Hino, Y. Kawabata, R. Maruyama, and T. Ebisawa, Nucl. Instrum. Methods Phys. Res. A 574, 292 (2007).
http://dx.doi.org/10.1016/j.nima.2007.01.179
17.
17. M. T. Rekveldt, T. Keller, and R. Golub, Europhys. Lett. 54, 342 (2001).
http://dx.doi.org/10.1209/epl/i2001-00248-2
18.
18. J. Kindervater, W. Häussler, A. Tischendorf, and P. Böni, J. Phys.: Conf. Ser. 340, 012030 (2012).
http://dx.doi.org/10.1088/1742-6596/340/1/012030
19.
19. V. Marry, E. Dubois, N. Malikova, J. Breu, and W. Häussler, J. Phys. Chem. C 117, 15106 (2013).
http://dx.doi.org/10.1021/jp403501h
20.
20. I. I. Rabi, Phys. Rev. 51, 652 (1937).
http://dx.doi.org/10.1103/PhysRev.51.652
21.
21.Under the condition , only the component that rotates in the same direction as the Larmor precession of the neutron spin in the static field is relevant to the resonant π-flip and can be neglected. This is the so-called rotating wave approximation.
22.
22.The model presented in Sec. II is derived in a semi-classical approach and can adequately describe the functioning of a RFSF. However, a full quantum approach yields further interesting insight into the NRSE technique which are out of the scope of this paper. Interested readers can find a thorough description of the interaction between a plane polarized wave and time-dependent magnetic fields30 and the formal solution of the so-called Krüger problem in the literature.31,32
23.
23. J. Repper, W. Häussler, A. Ostermann, L. Kredler, A. Chacón, and P. Böni, J. Phys.: Conf. Ser. 340, 012036 (2012).
http://dx.doi.org/10.1088/1742-6596/340/1/012036
24.
24. W. Häussler, “Weiterentwicklung, Aufbau un Test eines Resonanzspinecho-Spektrometers zum Einsatz eines Multidetektors,” Ph.D. thesis (Ruprecht-Karls-Univerität, Heidelberg, 1998).
25.
25. F. Bloch and A. Siegert, Phys. Rev. 57, 522 (1940).
http://dx.doi.org/10.1103/PhysRev.57.522
26.
26. J. Kindervater, “High resolution study of the critical dynamics in Mn1-xFexSi (0 < x < 0.12) by the MIEZE technique,” (unpublished).
27.
27. G. Brandl, R. Georgii, W. Häussler, S. Mühlbauer, and P. Böni, Nucl. Instrum. Methods Phys. Res. A 654, 394 (2011).
http://dx.doi.org/10.1016/j.nima.2011.07.003
28.
28. R. M. Ibberson, Nucl. Instrum. Methods Phys. Res. A 600, 47 (2009).
http://dx.doi.org/10.1016/j.nima.2008.11.066
29.
29. S. Torii, M. Yonemura, Y. Ishikawa, P. Miao, R. Tomiyasu, S. Satoh, Y. Noda, and T. Kamiyama, J. Phys.: Conf. Ser. 502, 012052 (2014).
http://dx.doi.org/10.1088/1742-6596/502/1/012052
30.
30. N. Arend and W. Häussler, Europhys. Lett. 96, 42001 (2011).
http://dx.doi.org/10.1209/0295-5075/96/42001
31.
31. R. Golub, R. Gähler, and T. Keller, Am. J. Phys. 62, 779 (1994).
http://dx.doi.org/10.1119/1.17459
32.
32. V. K. Ignatovich and F. V. Ignatovich, Am. J. Phys. 71, 1013 (2003).
http://dx.doi.org/10.1119/1.1575763
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/7/10.1063/1.4886383
Loading
/content/aip/journal/rsi/85/7/10.1063/1.4886383
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/85/7/10.1063/1.4886383
2014-07-11
2014-07-25

Abstract

Radiofrequency spin flippers (RFSF) are key elements of Neutron Resonance Spin Echo (NRSE) spectrometers, which allow performing controlled manipulations of the beam polarization. We report on the design and test of a new type of RFSF which originality lies in the new manufacturing technique for the static coil. The largely automated procedure ensures reproducible construction as well as an excellent homogeneity of the neutron magnetic resonance condition over the coil volume. Two salient features of this concept are the large neutron window and the closure of the coil by a μ-metal yoke which prevents field leakage outside of the coil volume. These properties are essential for working with large beams and enable new applications with coils tilted with respect to the beam axis such as neutron Larmor diffraction or the study of dispersive excitations by inelastic NRSE.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/85/7/1.4886383.html;jsessionid=603armki8aml.x-aip-live-03?itemId=/content/aip/journal/rsi/85/7/10.1063/1.4886383&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Neutron resonance spin flippers: Static coils manufactured by electrical discharge machining
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/7/10.1063/1.4886383
10.1063/1.4886383
SEARCH_EXPAND_ITEM