Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.The optical depth of a solid metal sample is typically a few tens of nanometers.
2. B. M. La Lone, G. D. Stevens, W. D. Turley, D. B. Holtkamp, A. J. Iverson, R. S. Hixson, and L. R. Veeser, J. Appl. Phys. 114, 063506 (2013).
3. R. Grover and P. A. Urtiew, J. Appl. Phys. 45, 146 (1974).
4. H. Tan and T. J. Ahrens, High Pressure Res. 2, 159 (1990).
5. H. Tan and C. Dai, High Pressure Res. 21, 183 (2001).
6. V. W. Yuan, J. D. Bowman, D. J. Funk, G. L. Morgan, R. L. Rabie, C. E. Ragan, J. P. Quintana, and H. L. Stacy, Phys. Rev. Lett. 94, 125504 (2005).
7. D. C. Swift, A. Seifter, D. B. Holtkamp, V. W. Yuan, J. D. Bowman, and D. A. Clark, Phys. Rev. B 77, 092102 (2008).
8. B. Yaakobi, T. R. Boehly, D. D. Meyerhofer, T. J. B. Collins, B. A. Remington, P. G. Allen, S. M. Pollaine, H. E. Lorenzana, J. H. Eggert, Phys. Rev. Lett. 95, 075501 (2005).
9. Y. Ping, F. Coppari, D. G. Hicks, B. Yaakobi, D. E. Fratanduono, S. Hamel, J. H. Eggert, J. R. Rygg, R. F. Smith, D. C. Swift, D. G. Braun, T. R. Boehly, and G. W. Collins, Phys. Rev. Lett. 111, 065501 (2013).
10. C. S. Yoo, N. C. Holmes, M. Ross, D. J. Webb, and C. Pike, Phys. Rev. Lett. 70, 3931 (1993).
11. K. G. Gallagher and T. J. Ahrens, Shock Waves, Proceeding of the 20th International Symposium on Shock Waves, edited by B. Sturtevant, J. E. Shepherd, and H. G. Hornung (World Scientific, 1997), Vol. 2, pp. 14011406.
12. T. J. Ahrens and K. G. Holland, AIP Conf. Proc. 429, 133 (1998).
13. K. G. Holland and T. J. Ahrens, Geophys. Monogr. Ser. 101, 335 (1998).
14. P. Beck, A. F. Goncharov, V. V. Struzhkin, B. Militzer, H. Mao, and R. J. Hemley, Appl. Phys. Lett. 91, 181914 (2007).
15.For a review of these techniques see A. M. Hofmeister, Proc. Natl. Acad. Sci. U.S.A. 104, 9192 (2007).
16. C. Mabire and P. L. Hereil, AIP Conf. Proc. 505, 93 (2000).
17. P. L. Hereil and C. Mabire, J. Phys. IV Fr. 10, Pr9799 (2000).
18. U. Zammit, M. Marinelli, F. Mercuri, S. Paoloni, and F. Scudieri, Rev. Sci. Instrum. 82, 121101 (2011).
19.Vulcan Resources, Inc., Phoenix Arizona, 99.9% purity tin, 100 μm average grain size. The samples are diamond turned on both sides to obtain a specular finish. They are made large in diameter compared to the 12.5 mm diameter explosive cylinder to reduce background light from the HE gases in the pyrometer.
20.Quantel (France) pulsed Nd:YAG laser model Brilliant (360 mJ). External optics, including a waveplate and polarizer allow us to control the energy and direct the beam onto the target.
21.Fermionics (Simi Valley, CA). The detector is a 300 μm diameter InGaAs photodiode mounted onto a Terahertz Technologies, Inc., transimpedance amplifier with gain of 10,000 V/A. Light was directed through filters that pass wavelengths longer than 1150 nm. The detector is insensitive to light with wavelengths longer than 1700 nm, so the pass band of this pyrometer channel is from 1150 to 1700 nm.
22.Hamamatsu model 3896 photomultiplier. The filters pass wavelengths from 650 to 900 nm.
23. K. Boboridis and A. W. Obst, AIP Conf. Proc. 684, 759 (2003).
24.DataRay, Inc., Bella Vista, CA, model WinCamD/1M4 with sensor size of 6.3 × 4.8 mm2.
25. O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, Rev. Sci. Instrum. 77, 083108 (2006).
26. W. D. Turley, D. B. Holtkamp, L. R. Veeser, G. D. Stevens, B. R. Marshall, A. Seifter, R. B. Corrow, J. B. Stone, J. A. Young, and M. Grover, J. Appl. Phys. 110, 103510 (2011).
27. D. Partouche-Sebban, J. L. Pelissier, W. W. Anderson, R. S. Hixson, and D. B. Holtkamp, Physica B 364, 1 (2005).
28. CRC Handbook, 71st ed., edited by D. R. Lide (CRC, Boca Raton, FL, 1990), pp. 12107.
29.Since we lack EOS information for the glue, which is a polyurethane methacrylate, we substituted the EOS of polymethyl methacrylate (PMMA) to get a glue temperature estimate. In general, epoxies and PMMA have very similar shock Hugoniots.
30.3R/M, where R is the gas constant, 8.32 J/(mol K), and M is the molecular weight, 118.7 g/mol for tin.
31. J. D. Kress, L. A. Collins, S. Mazevet, and D. A. Horner, AIP Conf. Proc. 955, 1433 (2007).
32. J. D. Kress and L. A. Collins, private communication (2014).

Data & Media loading...


Article metrics loading...



A pulsed laser heating method was developed for determining thermal transport properties of solids under shock-wave compression. While the solid is compressed, a laser deposits a known amount of heat onto the sample surface, which is held in the shocked state by a transparent window. The heat from the laser briefly elevates the surface temperature and then diffuses into the interior via one-dimensional heat conduction. The thermal effusivity is determined from the time history of the resulting surface temperature pulse, which is recorded with optical pyrometry. Thermal effusivity is the square root of the product of thermal conductivity and volumetric heat capacity and is the key thermal transport parameter for relating the surface temperature to the interior temperature of the sample in a dynamic compression experiment. Therefore, this method provides information that is needed to determine the thermodynamic state of the interior of a compressed metal sample from a temperature measurement at the surface. The laser heat method was successfully demonstrated on tin that was shock compressed with explosives to a stress and temperature of ∼25 GPa and ∼1300 K. In this state, tin was observed to have a thermal effusivity of close to twice its ambient value. The implications on determining the interior shock wave temperature of tin are discussed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd