1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Electrical conductivity measurements on disk-shaped samples
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/85/7/10.1063/1.4886812
1.
1. A. T. Burkov, A. Heinrich, P. P. Konstantinov, T. Nakama, and K. Yagasaki, Meas. Sci. Technol. 12, 264 (2001).
http://dx.doi.org/10.1088/0957-0233/12/3/304
2.
2. V. Ponnambalam, S. Lindsey, N. S. Hickman, and T. M. Tritt, Rev. Sci. Instrum. 77, 073904 (2006).
http://dx.doi.org/10.1063/1.2219734
3.
3. P. H. M. Bottger, E. Flage-Larsen, O. B. Karlsen, and T. G. Finstad, Rev. Sci. Instrum. 83, 025101 (2012).
http://dx.doi.org/10.1063/1.3673474
4.
4. J. de Boor, C. Stiewe, P. Ziolkowski, T. Dasgupta, G. Karpinski, E. Lenz, F. Edler, and E. Mueller, J. Electron. Mater. 42, 1711 (2013).
http://dx.doi.org/10.1007/s11664-012-2404-z
5.
5. O. Boffoue, A. Jacquot, A. Dauscher, B. Lenoir, and M. Stolzer, Rev. Sci. Instrum. 76, 053907 (2005).
http://dx.doi.org/10.1063/1.1912820
6.
6. X. Ao, J. de Boor, and V. Schmidt, Adv. Energy Mater. 1, 1007 (2011).
http://dx.doi.org/10.1002/aenm.201100272
7.
7. J. de Boor and V. Schmidt, Appl. Phys. Lett. 99, 022102 (2011).
http://dx.doi.org/10.1063/1.3609325
8.
8. J. de Boor and V. Schmidt, Adv. Mater. 22, 4303 (2010).
http://dx.doi.org/10.1002/adma.201001654
9.
9. R. L. Kallaher, C. A. Latham, and F. Sharifi, Rev. Sci. Instrum. 84, 013907 (2013).
http://dx.doi.org/10.1063/1.4789311
10.
10. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, J. Appl. Phys. 32, 1679 (1961).
http://dx.doi.org/10.1063/1.1728417
11.
11. J. Martin, Rev. Sci. Instrum. 83, 065101 (2012).
http://dx.doi.org/10.1063/1.4723872
12.
12. A. Uhlir, Bell Syst. Tech. J. 34, 105 (1955).
http://dx.doi.org/10.1002/j.1538-7305.1955.tb03765.x
13.
13. F. M. Smits, Bell Syst. Tech. J. 37, 711 (1958).
http://dx.doi.org/10.1002/j.1538-7305.1958.tb03883.x
14.
14. E. Hansen, Appl. Sci. Res., Sect. B 8, 93 (1960).
http://dx.doi.org/10.1007/BF02920047
15.
15. L. B. Valdes, Proc. IRE 42, 420 (1954).
http://dx.doi.org/10.1109/JRPROC.1954.274680
16.
16. V. S. K. G. Kelekanjeri and R. A. Gerhardt, Meas. Sci. Technol. 19, 025701 (2008).
http://dx.doi.org/10.1088/0957-0233/19/2/025701
17.
17. L. J. Swartzendruber, Solid-State Electron. 7, 413 (1964).
http://dx.doi.org/10.1016/0038-1101(64)90038-3
18.
18. M. Yamashita, T. Nishii, and H. Kurihara, Jpn. J. Appl. Phys., Part 1 35, 1948 (1996).
http://dx.doi.org/10.1143/JJAP.35.1948
19.
19. D. S. Perloff, J. Electrochem. Soc. 123, 1745 (1976).
http://dx.doi.org/10.1149/1.2132683
20.
20. K. Zabrocki, P. Ziolkowski, T. Dasgupta, J. de Boor, and E. Mueller, J. Electron. Mater. 42, 2402 (2013).
http://dx.doi.org/10.1007/s11664-013-2579-y
21.
21. E. J. Zimney, G. H. B. Dommett, R. S. Ruoff, and D. A. Dikin, Meas. Sci. Technol. 18, 2067 (2007).
http://dx.doi.org/10.1088/0957-0233/18/7/037
22.
22. G. Norberg, S. Dejanovic, and H. Hesselbom, IEEE Trans. Compon. Packag. Technol. 29, 371 (2006).
http://dx.doi.org/10.1109/TCAPT.2006.875891
23.
23. G. Sposito, P. Cawley, and P. B. Nagy, NDT&E Int. 43, 394 (2010).
http://dx.doi.org/10.1016/j.ndteint.2010.03.005
24.
24. H. Wang, W. Porter, H. Boettner, J. Koenig, L. Chen, S. Bai, T. Tritt, A. Mayolet, J. Senawiratne, C. Smith, F. Harris, P. Gilbert, J. Sharp, J. Lo, H. Kleinke, and L. Kiss, J. Electron. Mater. 42, 654 (2013).
http://dx.doi.org/10.1007/s11664-012-2396-8
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/7/10.1063/1.4886812
Loading
/content/aip/journal/rsi/85/7/10.1063/1.4886812
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/85/7/10.1063/1.4886812
2014-07-09
2014-09-16

Abstract

We have developed a sample holder design that allows for electrical conductivity measurements on a disk-shaped sample. The sample holder design is based on and compatible with popular measurement systems that are currently restricted to bar-shaped samples. The geometrical correction factors which account for the adjusted measurement configuration were calculated using finite element modeling for a broad range of sample and measurement geometries. We also show that the modeling results can be approximated by a simple analytical fit function with excellent accuracy. The proposed sample holder design is compatible with a concurrent measurement of the Seebeck coefficient. The chosen sample geometry is furthermore compatible with a thermal conductivity measurement using a laser flash apparatus. A complete thermoelectric characterization without cutting the sample is thus possible.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/85/7/1.4886812.html;jsessionid=fo84qkos36gic.x-aip-live-03?itemId=/content/aip/journal/rsi/85/7/10.1063/1.4886812&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electrical conductivity measurements on disk-shaped samples
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/7/10.1063/1.4886812
10.1063/1.4886812
SEARCH_EXPAND_ITEM