Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. Ertl, Angew. Chem. Int. Ed. 47, 35243535 (2008).
2. J. A. Rodriguez, J. C. Hanson, and P. J. Chupas, In-Situ Characterization of Heterogeneous Catalysts (Wiley, New Jersey, 2013).
3. In situ Attenuated Total Reflection Infrared Spectroscopy of Catalysts, edited by T. Visser (American Scientific Publishers, San Diego, 2004).
4. M. A. Banares, M. O. Guerrero-Perez, J. L. G. Fierro, and G. G. Cortez, J. Mater. Chem. 12, 33373342 (2002).
5. S. J. Tinnemans, J. G. Mesu, K. Kervinen, T. Visser, T. A. Nijhuis, A. M. Beale, D. E. Keller, A. M. J. van der Eerden, and B. M. Weckhuysen, Catal. Today 113, 315 (2006).
6. M. Behrens, F. Studt, I. Kasatkin, S. Kuhl, M. Havecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B. L. Kniep, M. Tovar, R. W. Fischer, J. K. Norskov, and R. Schlögl, Science 336, 893897 (2012).
7. F. Zaera, Chem. Rev. 112, 29202986 (2012).
8. U. K. Singh and M. A. Vannice, Appl. Catal. A: Gen. 213, 124 (2001).
9. P. Maki-Arvela, J. Hajek, T. Salmi, and D. Y. Murzin, Appl. Catal. A: Gen. 292, 149 (2005).
10. M. Besson, P. Gallezot, and C. Pinel, Chem. Rev. 114, 18271870 (2014).
11. P. Maki-Arvela, B. Holmbom, T. Salmi, and D. Y. Murzin, Catal. Rev.-Sci. Eng. 49, 197340 (2007).
12. T. Mallat and A. Baiker, Catal. Sci. Technol. 1, 15721583 (2011).
13. B. M. Weckhuysen, Chem. Commun. 2002, 97110.
14. R. P. Eischens, W. A. Pliskin, and S. A. Francis, J. Chem. Phys. 22, 17861787 (1954).
15. R. P. Eischens and W. A. Pliskin, Adv. Catal. 10, 156 (1958).
16. J. Fahrenfort, Spectrochim. Acta 17, 698 (1961).
17. N. J. Harrick, Phys. Rev. Lett. 4, 224226 (1960).
18. S. A. Tromp, G. Mul, Y. Zhang-Steenwinkel, M. T. Kreutzer, and J. A. Moulijn, Catal. Today 126, 184190 (2007).
19. T. Bürgi and A. Baiker, in Advances in Catalysis, edited by B. C. Gates and H. Knozinger (Elsevier Academic Press Inc, San Diego, 2006), Vol. 50, p 227283.
20. J. M. Andanson and A. Baiker, Chem. Soc. Rev. 39, 45714584 (2010).
21. T. Bürgi and A. Baiker, J. Phys. Chem. B 106, 1064910658 (2002).
22. S. D. Ebbesen, B. L. Mojet, and L. Lefferts, Langmuir 22, 10791085 (2006).
23. R. He, R. R. Davda, and J. A. Dumesic, J. Phys. Chem. B 109, 28102820 (2005).
24. M. A. Banares, Catal. Today 100, 7177 (2005).
25. J. Ryczkowski, Catal. Today 68, 263381 (2001).
26. C. J. Hirschmugl, Surf. Sci. 500, 577604 (2002).
27. F. Abeles, J. Phys. Rad. 11, 310314 (1950).
28. W. N. Hansen, J. Opt. Soc. Am. 58, 380 (1968).
29. T. Bürgi, Phys. Chem. Chem. Phys. 3, 21242130 (2001).
30. F. Meemken, A. Baiker, S. Schenker, and K. Hungerbühler, Chemistry Eur. J. 20, 12981309 (2014).
31. A. Urakawa, T. Bürgi, and A. Baiker, Chem. Eng. Sci. 63, 49024909 (2008).
32. T. Bürgi, A. Baiker, and A. Urakawa, Chem. Phys. 324, 653658 (2006).
33. A. Urakawa, R. Wirz, T. Bürgi, and A. Baiker, J. Phys. Chem. B 107, 1306113068 (2003).
34. A. Baiker, J. Mol. Catal. A: Chem. 115, 473493 (1997).
35. T. Mallat, E. Orglmeister, and A. Baiker, Chem. Rev. 107, 48634890 (2007).
36. D. Ferri, T. Bürgi, and A. Baiker, Chem. Commun. 2001, 11721173.
37. J. Kubota and F. Zaera, J. Am. Chem. Soc. 123, 1111511116 (2001).
38. Z. Ma, I. Lee, J. Kubota, and F. Zaera, J. Mol. Catal. A: Chem. 216, 199207 (2004).
39. R. G. Greenler, J. Chem. Phys. 44, 310315 (1966).
40. R. G. Greenler, D. R. Snider, D. Witt, and R. S. Sorbello, Surf. Sci. 118, 415428 (1982).
41. Z. Cakl, S. Reimann, E. Schmidt, A. Moreno, T. Mallat, and A. Baiker, J. Catal. 280, 104115 (2011).
42. F. Meemken, A. Baiker, J. Dupré, and K. Hungerbühler, ACS Catal. 4, 344354 (2014).
43.See supplementary material at for a detailed assignment of the vibrational modes of TFAP and the alcohol product PTFE. [Supplementary Material]
44. U. K. Singh, R. N. Landau, Y. K. Sun, C. Leblond, D. G. Blackmond, S. K. Tanielyan, and R. L. Augustine, J. Catal. 154, 9197 (1995).
45. M. W. Cook, D. N. Hanson, and B. J. Alder, J. Chem. Phys. 26, 748751 (1957).
46. J. H. Hildebrand, B. J. Alder, J. W. Beams, and H. M. Dixon, J. Phys. Chem. 58, 577579 (1954).
47. M. Garland, H. P. Jalett, and H. U. Blaser, in Studies in Surface Science and Catalysis, edited by M. Guisnet, J. Barrault, C. Bouchoule et al. (Elsevier, 1991), Vol. 59, p 177184.
48. K. Balazsik, K. Szöri, G. Szöllösi, and M. Bartók, Catal. Commun. 12, 14101414 (2011).
49. N. Maeda, F. Meemken, K. Hungerbühler, and A. Baiker, Chimia 66, 664667 (2012).

Data & Media loading...


Article metrics loading...



Design and performance of a reactor set-up for attenuated total reflection infrared (ATR-IR) spectroscopy suitable for simultaneous reaction monitoring of bulk liquid and catalytic solid-liquid-gas interfaces under working conditions are presented. As advancement of spectroscopy an methodology for gas-liquid-solid reaction monitoring was developed that simultaneously combines catalytic activity and molecular level detection at the catalytically active site of the same sample. Semi-batch reactor conditions are achieved with the analytical set-up by implementing the ATR-IR flow-through cell in a recycle reactor system and integrating a specifically designed gas feeding system coupled with a bubble trap. By the use of only one spectrometer the design of the new ATR-IR reactor cell allows for simultaneous detection of the bulk liquid and the catalytic interface during the working reaction. Holding two internal reflection elements (IRE) the sample compartments of the horizontally movable cell are consecutively flushed with reaction solution and pneumatically actuated, rapid switching of the cell (<1 s) enables to quasi simultaneously follow the heterogeneously catalysed reaction at the catalytic interface on a catalyst-coated IRE and in the bulk liquid on a blank IRE. For a complex heterogeneous reaction, the asymmetric hydrogenation of 2,2,2-trifluoroacetophenone on chirally modified Pt catalyst the elucidation of catalytic activity/enantioselectivity coupled with simultaneous monitoring of the catalytic solid-liquid-gas interface is shown. Both catalytic activity and enantioselectivity are strongly dependent on the experimental conditions. The opportunity to gain improved understanding by coupling measurements of catalytic performance and spectroscopic detection is presented. In addition, the applicability of modulation excitation spectroscopy and phase-sensitive detection are demonstrated.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd