1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Invited Review Article: Development of crystal lenses for energetic photons
Rent:
Rent this article for
Access full text Article
/content/aip/journal/rsi/85/8/10.1063/1.4893585
1.
1. T. Lindquist and W. Webber, “A focusing X-ray telescope for use in the study of extraterrestrial X-Ray sources in the energy range 20–140 keV,” Can. J. Phys. 46, S1108 (1968).
2.
2. R. K. Smither, “A new method for focusing and imaging X-rays and gamma rays with diffraction crystals,” Symposium on Future X-Ray Experiments, X-Rays in the 80's, GSFC, NASA Technical Memorandum No. 83848 (NASA, 1981).
3.
3. R. K. Smither, “New method for focusing X-rays and gamma rays,” Rev. Sci. Instrum. 53(2), 131141 (1982).
http://dx.doi.org/10.1063/1.1136941
4.
4. R. K. Smither, “Gamma ray and X-ray telescopes using variable-metric diffraction crystals,” Ann. N. Y. Acad. Sci. 44, 673 (1983).
5.
5. D. Rose, H. Ostrander, and B. Hamermesh, “Argonne 7.7-meter bent-crystal gamma-ray spectrometer,” Rev. Sci. Instrum. 28, 233 (1957).
http://dx.doi.org/10.1063/1.1715849
6.
6. R. K. Smither, “Argonne 7.7 m bent crystal spectrometer,” Symposium on Crystal Diffraction of Nuclear Gamma Rays, National Technical University, Athens, 1964, edited by F. Boehm (California Institute of Technology, Pasadena, CA, 1964), p. 9.
7.
7. R. K. Smither, “Recent improvements in the Argonne 7.7 m bent crystal spectrometer,” Neutron Capture Gamma Ray Spectroscopy (International Atomic Energy Agency, Vienna, 1969).
8.
8. R. K. Smither and A. I. Namenson, “Use of crystal diffraction with Ge diode detector for high resolution gamma-ray spectroscopy,” Rev. Sci. Instrum. 38, 52 (1967).
http://dx.doi.org/10.1063/1.1720529
9.
9. R. Giacconi et al., “Einstein (HEAO-2) x-ray-observatory,” Astrophys. J. 230, 540 (1979).
http://dx.doi.org/10.1086/157110
10.
10. R. Giacconi and H. Tananbaum, “The Einstein observatory: New perspectives in astronomy,” Science 209, 865 (1980).
http://dx.doi.org/10.1126/science.209.4459.865
11.
11. H. Tananbaum, “X-ray astronomy with the Einstein observatory,” Proceedings of the Uhuru Memorial Symposium: The Past, Present and Future of X-Ray Astronomy (GSFC, 1980).
12.
12. R. K. Smither, “Instrument and method for focusing x-rays, gamma rays, and neutrons,” U.S. patent 4,429,411 (1984).
13.
13. N. Lund and R. K. Smither, “A Bragg crystal flux concentrator for annihilation radiation,” in Proceedings of the 16th International Cosmic Ray Conference, Bangalore, India (Tata Institute of Fundamental Research, Bombay, 1983).
14.
14. R. K. Smither, “Crystal diffraction lenses for imaging gamma-ray telescope,” in Proceedings of the 13th Texas Symposium on Relativistic Astrophysics, Chicago, IL, 15–18 December 1986 (World Scientific, 1986).
15.
15. R. K. Smither, L. R. Greenwood, and C. T. Roche, “Crystal diffraction telescope for discrete line sources, recent experimental results,” in Proceedings of the Gamma Ray Observation Science Work Shop, GSFC (GSFC, 1989).
16.
16. N. Lund, “A study of focusing telescopes for soft gamma rays,” Exp. Astron. 2, 259273 (1992).
http://dx.doi.org/10.1007/BF00690085
17.
17. S. Melone, O. Francescangeli, and R. Caciuffo, “Gamma-ray focusing concentrators for astrophysical observations by crystal diffraction Laue geometry,” Rev. Sci. Instrum. 64(12), 34673473 (1993).
http://dx.doi.org/10.1063/1.1144269
18.
18.The Argonne Treaty Verification Program, directed by Dr. Armando Travelli, funded the construction of the large 45 cm diameter lens (1988–1992).
19.
19. R. K. Smither, P. B. Fernandez, T. Graber, P. v. Ballmoos, J. Naya, F. Albernhe, G. Vedrenne, and M. Faiz, “Crystal diffraction lens telescope for focusing nuclear gamma rays,” Proc. SPIE 2806, 509523 (1996).
http://dx.doi.org/10.1117/12.254001
20.
20. M. Sanchez del Rio and R. J. Dejus, “Status of XOP: An x-ray optics software toolkit,” Proc. SPIE 5536, 171174 (2004).
http://dx.doi.org/10.1117/12.560903
21.
21. M. Sanchez del Rio, C. Ferrero, and V. Mocella, “Computer simulations of bent perfect crystal diffraction profiles,” Proc. SPIE 3151, 312323 (1997).
http://dx.doi.org/10.1117/12.294490
22.
22. A. Kohnle, R. Smither, T. Graber, P. Fernandez, and P. v. Ballmoos, “Measurement of diffraction efficiencies relevant to crystal lens telescopes,” Nucl. Instrum. Methods Phys. Res., Sect. A 416, 493504 (1998).
http://dx.doi.org/10.1016/S0168-9002(98)00628-7
23.
23. R. K. Smither, P. B. Fernandez, T. Graber, P. v. Ballmoos, J. Naya, F. Albernhe, G. Vedrenne, and M. Faiz, “Review of crystal diffraction and its application to focusing energetic gamma rays,” Exp. Astron. 6, 4756 (1995).
http://dx.doi.org/10.1007/BF00419257
24.
24. P. v. Ballmoos, R. K. Smither, J. E. Naya, F. Albernhe, M. Faiz, P. B. Fernandez, T. Graber, and G. Vedrenne, “A tunable crystal diffraction telescope for the energy range of nuclear transitions,” Exp. Astron. 6 (1995).
25.
25. A. Kohnle, R. Smither, T. Graber, P. v. Ballmoos, P. Laporte, and J.-F. Olive, “Realization of a tunable crystal lens as an instrument to focus gamma rays,” Nucl. Instrum. Methods Phys. Res., Sect. A 408, 553561 (1998).
http://dx.doi.org/10.1016/S0168-9002(98)00148-X
26.
26. P. V. Ballmoos, J. E. Naya, F. Albernhe, G. Vedrenne, R. K. Smither, M. Faiz, P. B. Fernandez, and T. Graber, “A spaceborne crystal diffraction telescope for the energy range of nuclear transitions,” paper presented at the Symposium on Imaging in High Energy Astronomy, Anacapri, Italy, 26–30 September 1994; published as part of the Proceedings of Imaging in High Energy Astronomy, edited by L. Bassani and G. di Cocco (Kluwer Academic Publishers, Dordrecht, 1995), pp. 239245.
27.
27. N. V. Abrosimov, A. Ludge, H. Riemann, V. N. Kurlov, D. Borissova, V. Klemm, H. Haiioin, P. v. Ballmoos, P. Bastie, B. Hamelin, and R. K. Smither, “Growth and properties of Si(1-x) Ge(x) mosaic single crystals for γ-ray lens application,” J. Cryst. Growth 275, 495 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2004.11.110
28.
28. N. Abrosimov, S. Rossolenko, V. Alex, A. Gerhardt, and W. Schroder, “Single crystal growth of Si(1-x) Ge(x) by the Czochralski technique,” J. Cryst. Growth 166, 657 (1996).
http://dx.doi.org/10.1016/0022-0248(96)00036-X
29.
29. N. Abrosimov, S. Rossolenko, W. Thieme, A. Gerhardt, and W. Schroder, “Czochralski growth of Si- and Ge-rich SiGe single crystals,” J. Cryst. Growth 174, 182 (1997).
http://dx.doi.org/10.1016/S0022-0248(96)01102-5
30.
30. N. V. Abrosimov, A. Ludge, H. Riemann, and W. Schroder, “Lateral photo voltage scanning (LPS) for the visualization of the solid-liquid interface of Si1-x Gex single crystalsJ. Cryst. Growth 237–239, 356360 (2002).
http://dx.doi.org/10.1016/S0022-0248(01)01940-6
31.
31. H. Halloin, P. v. Ballmoos, P. Bastie, B. Hamelin, V. Lonjou, J. M. Alvarez, P. Jean, J. Knodlseder, R. K. Smither, and G. Verdenne, “ClLAIRE-gamma ray lens: flight and long distance results,” Proc. SPIE 5168, 471 (2004).
http://dx.doi.org/10.1117/12.508307
32.
32. J. E. Naya, R. K. Smither, P. v. Ballmoos, F. Albernhe, M. Faiz, P. B. Fernandez, T. Graber, and G. Vedrenne, “Experimental results obtained with the positron annihilation-radiation telescope of the Toulouse-Argonne Collaboration,” paper presented at the Symposium on Imaging in High Energy Astronomy, Anacapri, Italy, 26–30 September 1994; published as part of the Proceedings of Imaging in High Energy Astronomy, edited by L. Bassani and G. di Cocco (Kluwer Academic Publishers, Dordrecht, 1995), pp. 313317.
33.
33. R. K. Smither, “Crystal diffraction lens for medical imaging,” Proc. SPIE 3977, 342 (2000).
http://dx.doi.org/10.1117/12.384508
34.
34. R. K. Smither and D. E. Roa, “The physics of medical imaging with crystal diffraction lenses,” Proc. SPIE 4320, 447 (2001).
http://dx.doi.org/10.1117/12.430916
35.
35. D. E. Roa and R. K. Smither, “Copper crystal lens for medical imaging: First results,” Proc. SPIE 4320, 435 (2001).
http://dx.doi.org/10.1117/12.430914
36.
36. D. E. Roa, R. K. Smither, X. Zhang, K. Nie, Y. Y. Shieh, N. S. Ramsinghani, N. Mile, J. V. Kuo, J. L. Redpath, M. S. A. L. Al-Ghazi, and P. Caligiuri, “Development of a new photon diffraction imaging system for diagnostic nuclear medicine,” Exp. Astrom. 20, 229239 (2005).
http://dx.doi.org/10.1007/s10686-005-9017-y
37.
37. R. K. Smither, “High resolution medical imaging system for 3-D imaging of radioactive sources with 1 mm FWHM spatial resolution,” Proc. SPIE 5030, 1052 (2003).
http://dx.doi.org/10.1117/12.480393
38.
38. A. Erko, N. Abrosimov, and V. Alex, “Laterally-graded Si Ge high resolution synchrotron optics,” J. Cryst. Res. Technol. 37, 685 (2002).
http://dx.doi.org/10.1002/1521-4079(200207)37:7<685::AID-CRAT685>3.0.CO;2-Z
39.
39. R. Smither, K. Abu Saleem, M. Beno, C. Kurtz, and A. Khounsary, “Diffraction efficiency and diffraction bandwidth of thermal-gradient and composition-gradient crystals,” Rev. Sci. Instrum. 76, 123107 (2005).
http://dx.doi.org/10.1063/1.2130928
40.
40. R. K. Smither, K. Abu Saleem, D. E. Roa, M. Beno, P. v. Ballmoos, and G. Skinner, “High diffraction efficiency, broadband, diffraction crystals for use in crystal diffraction crystals,” Exp. Astrom. 20, 201 (2005).
http://dx.doi.org/10.1007/s10686-005-9019-9
41.
41. G. Hildebrandt, “Gekrummte Rontgenstraahlen im schwach verformten Kristallgitter, A. Laue-Fall der Interferenz,” Zs Kristallographie, Bd. 112, 312 (1959).
http://dx.doi.org/10.1524/zkri.1959.112.1-6.312
42.
42. P. Penning and D. Polder, “Anomalous transmission of X-rays in elastically deformed crystals,” Philips Res. Rep. 16, 419 (1961).
43.
43. N. Kato, “Pendellosung fringes in distorted crystals I. Fermat's principle for Bloch waves,” J. Phys. Soc. Jpn. 18, 1785 (1963).
http://dx.doi.org/10.1143/JPSJ.18.1785
44.
44. N. Kato, “Pendellosung fringes in distorted crystals II. Application to two-beam cases,” J. Phys. Soc. Jpn. 19, 67 (1964).
http://dx.doi.org/10.1143/JPSJ.19.67
45.
45. N. Kato, “Pendellosung fringes in distorted crystals III. Application to homogeneously bent crystals,” J. Phys. Soc Jpn. 19, 971 (1964).
http://dx.doi.org/10.1143/JPSJ.19.971
46.
46. F. Balibar, F. N. Chukhovskii, and C. Malgrange, “Dynamical x-ray propagation: A theoretical approach to the creation of new wave fields,” Acta Cryst. A 39, 387 (1983).
http://dx.doi.org/10.1107/S0108767383000835
47.
47. C. Malgrange, “X-ray propagation in distorted crystals: Dynamical to kinematical theory,” Cryst. Res. Technol. 37, 654 (2002).
http://dx.doi.org/10.1002/1521-4079(200207)37:7<654::AID-CRAT654>3.0.CO;2-E
48.
48. S. Keitel, “Untersuchung von Si(1-x) Ge(x)-Gradientenkristallen und in-situ getemperten Silizium-Einkristallen als Monochromatoren fur hochenergetische Synchrotonstrahlung,” Ph. D. thesis (Physics Department, University of Hamburg, 1999).
49.
49. S. Keitel et al., “Si1-x Gex gradiënt kristal: A new monochromator material for hard x-rays,” Nucl. Instrum. Methods Phys. Res., Sect. A 414, 427 (1998).
http://dx.doi.org/10.1016/S0168-9002(98)00542-7
50.
50. S. Keitel, C. Malgrange, T. Niemoller, and J. Schneider, “Diffraction of 100 to 200 keV x-rays from a Si(1-x) Ge(x) gradient crystal: Comparison with results from dynamical theory,” Acta. Cryst. A 55, 855 (1999).
http://dx.doi.org/10.1107/S010876739900313X
51.
51. P. v. Ballmoos, H. Halloin, J. Evrard, B. Hamelin, M. Hernanz, P. Jean, J. Knodlseder, V. Lonjon, R. K. Smither, and G. Verdenne, “Max-A gamma-ray lens for nuclear astrophysics,” New Astron. Rev. 48, 243 (2004).
http://dx.doi.org/10.1016/j.newar.2003.11.032
52.
52. P. v. Ballmoos, H. Halloin, G. K. Skinner, R. K. Smither, J. Paul, N. V. Abrosimov, J. M. Alvarez, P. Astier, P. Bastie, D. Barret, A. B. Azzano, A. Blanchard, A. Boutonnet, P. Brousse, B. Gordier, T. Courvoisier, P. Jean, J. Isern, J. Knodlseder, P. Laurent, F. Lebrun, A. Marcowith, V. Martinot, L. Natalucci, J.-F. Olive, R. Pain, R. Sadat, H. Sainct, P. Ubertini, and W. Schroder, “Max-A gamma-ray lens for nuclear astrophysics,” Proc. SPIE 5168, 482 (2004).
http://dx.doi.org/10.1117/12.509672
53.
53. N. Barriere, P. von Ballmoos, G. K. Skinner, R. K. Smither, P. Bastie, E. Hinglais, N. Abrosimov, J. M. Alvarez, K. Andersen, P. Courtois, H. Halloin, M. Harris, M. Hernanz, J. Isern, P. Jean, J. Knodlseder, P. Ubertini, G. Vedrenne, G. Weidenspointner, and C. Wunderer, “MAX: Development of a Laue diffraction lens for nuclear astrophysics,” Exp. Astrophys. 20(1-3), 269278 (2005).
54.
54. N. Barriere, P. von Ballmoos, P. Bastie, P. Courtois, N. V. Abrosimov, K. Andersen, G. Skinner, and R. K. Smither, “Second generation crystals for Laue lens applicationsProc. SPIE 6266(1), 62662D (2006).
http://dx.doi.org/10.1117/12.672363
55.
55. R. K. Smither and P. B. Fernandez, “Variable-metric diffraction crystals for x-ray optics,” Rev. Sci. Instrum. 63, 17551762 (1992).
http://dx.doi.org/10.1063/1.1143335
56.
56. E. Erola, V. Etelaniemi, P. Suortti, P. Pattison, and W. Thomlinson, “X-ray reflectivity of bent perfect crystals in Bragg and Laue geometry,” J. Appl. Cryst. 23, 3542 (1990).
http://dx.doi.org/10.1107/S0021889889010800
57.
57. P. Suortti and W. Thomlinson, “A bent Laue crystal monochromator for angiography at the NSLS,” Nucl. Instrum. Methods Phys. Res., Sect. A 269, 639648 (1988).
http://dx.doi.org/10.1016/0168-9002(88)90145-3
58.
58. V. I. Kushnir, J. P. Quintana, and P. Georgopoulon, “Sagittally focusing monochromator,” Nucl. Instrum. Methods Phys. Res., Sect. A 328, 588 (1993).
http://dx.doi.org/10.1016/0168-9002(93)90679-C
59.
59. F. N. Chukhovskii, K. T. Gabrienlyan, and P. V. Petrashen, “The dynamical theory of x-ray Bragg diffraction from a crystal with a uniform strain gradient. The Green-Riemann function,” Acta. Cryst. A 34, 610 (1978).
http://dx.doi.org/10.1107/S056773947800128X
60.
60. V. I. Kushnir and A. T. Macrander, “A criterion for dynamical-to-kinematical transition in x-ray diffraction by a bent crystal,” Nucl. Instrum. Methods Phys. Res., Sect. A 347, 331337 (1994).
http://dx.doi.org/10.1016/0168-9002(94)91904-6
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/8/10.1063/1.4893585
Loading
/content/aip/journal/rsi/85/8/10.1063/1.4893585
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/85/8/10.1063/1.4893585
2014-08-28
2014-12-25

Abstract

This paper follows the development of crystal diffraction lenses designed to focus energetic photons. It begins with the search for a solution to the astrophysics problem of how to detect weak astrophysics sources of gamma rays and x-rays. This led to the basic designs for a lens and to the understanding of basic limitations of lens design. The discussion of the development of crystal diffraction lenses is divided into two parts: lenses using crystals with mosaic structure, and lenses that use crystals with curved crystal planes. This second group divides into two sub-groups: (1) Curved crystals that are used to increase the acceptance angle of the diffraction of a monochromatic beam and to increase the energy bandwidth of the diffraction. (2) Curved crystals used to focus gamma ray beams. The paper describes how these two types of crystals affect the design of the corresponding crystal lenses in different fields: astrophysics, medical imaging, detection of weak, distant, gamma-ray sources, etc. The designs of crystal lenses for these applications are given in enough detail to allow the reader to design a lens for his own application.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/85/8/1.4893585.html;jsessionid=3nutotv1627pc.x-aip-live-02?itemId=/content/aip/journal/rsi/85/8/10.1063/1.4893585&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Invited Review Article: Development of crystal lenses for energetic photons
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/8/10.1063/1.4893585
10.1063/1.4893585
SEARCH_EXPAND_ITEM