Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/85/9/10.1063/1.4896138
1.
1. M. Vallikivi, M. Hultmark, S. C. C. Bailey, and A. J. Smits, Exp. Fluids 51, 1521 (2011).
http://dx.doi.org/10.1007/s00348-011-1165-4
2.
2. S. Corrsin, Am. Sci. 49, 300 (1961).
3.
3. M. Roth, Q. J. R. Meteorol. Soc. 126, 941 (2000).
http://dx.doi.org/10.1002/qj.49712656409
4.
4. A. J. Arnfield, Int. J. Clim. 23, 1 (2003).
http://dx.doi.org/10.1002/joc.859
5.
5. I. D. James, Environ. Model. Softw. 17, 363 (2002).
http://dx.doi.org/10.1016/S1364-8152(01)00080-9
6.
6. R. A. Shaw, Annu. Rev. Fluid Mech. 35, 183 (2003).
http://dx.doi.org/10.1146/annurev.fluid.35.101101.161125
7.
7. S. B. Pope, Proc. Combust. Inst. 34, 1 (2013).
http://dx.doi.org/10.1016/j.proci.2012.09.009
8.
8. D. W. Bechert, M. Bruse, W. Hage, and R. Meyer, Naturwissenschaften 87, 157 (2000).
http://dx.doi.org/10.1007/s001140050696
9.
9. C. H. Gibson, Appl. Mech. Rev. 49, 299 (1996).
http://dx.doi.org/10.1115/1.3101929
10.
10. D. Ryu, H. Kang, J. Cho, and S. Das, Science 320, 909 (2008).
http://dx.doi.org/10.1126/science.1154923
11.
11. G. Ahlers, S. Grossmann, and D. Lohse, Rev. Mod. Phys. 81, 503 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.503
12.
12. E. Lindborg, Geophys. Res. Lett. 32, L01809, doi:10.1029/2004GL021319 (2005).
http://dx.doi.org/10.1029/2004GL021319
13.
13. J. A. Krommes, Phys. Rep. 360, 1 (2002).
http://dx.doi.org/10.1016/S0370-1573(01)00066-7
14.
14. L. Antiga and D. A. Steinman, Biorheology 46, 77 (2009).
http://dx.doi.org/10.3233/BIR-2009-0538
15.
15. N. Peters, Turbulent Combustion (Cambridge University Press, Cambridge, United Kingdom, 2000).
16.
16. L. Biferale and I. Procaccia, Phys. Rep. 414, 43 (2005).
http://dx.doi.org/10.1016/j.physrep.2005.04.001
17.
17. G. I. Taylor, Proc. R. Soc. London, Ser. A 151, 421 (1935).
http://dx.doi.org/10.1098/rspa.1935.0158
18.
18. G. Comte-Bellot and S. Corrsin, J. Fluid Mech. 25, 657 (1966).
http://dx.doi.org/10.1017/S0022112066000338
19.
19. U. Frisch, Turbulence (Cambridge University Press, Cambridge, United Kingdom, 1996).
20.
20. S. C. C. Bailey, G. J. Kunkel, M. Hultmark, M. Vallikivi, J. P. Hill, K. A. Meyer, C. Tsay, C. B. Arnold, and A. J. Smits, J. Fluid Mech. 663, 160 (2010).
http://dx.doi.org/10.1017/S0022112010003447
21.
21. M. Munk, “On a new type of wind tunnel,” Technical Note 60 (National Advisory Committee for Aeronautics, 1921).
22.
22. K. Oswatitsch and K. Wieghardt, Annu. Rev. Fluid Mech. 19, 1 (1987).
http://dx.doi.org/10.1146/annurev.fl.19.010187.000245
23.
23. M. M. Munk and E. W. Miller, “The variable density wind tunnel of the National Advisory Committee for Aeronautics,” Technical Report No. 227 (Langley Memorial Aeronautical Laboratory, 1926).
24.
24. E. N. Jacobs and I. H. Abbot, “The N. A. C. A. variable-density wind tunnel,” Technical Report No. 416 (National Advisory Committee for Aeronautics, 1933).
25.
25. A. E. von Doenhoff and F. T. J. Abbott, “The Langley two-dimensional low-turbulence pressure tunnel,” Technical Note 1283 (Langley Memorial Aeronautical Laboratory, 1947).
26.
26. R. J. McGhee, W. D. Beasley, and J. M. Foster, “Recent modifications and calibration of the Langley low-turbulence pressure tunnel,” Technical Paper 2328 (NASA, 1984).
27.
27. M. M. Choudhari, M. G. Lockrad, D. P. Macaraeg, B. A. Singer, and C. L. Streett, “Aeroacoustic experiments in the Langley low-turbulence pressure tunnel,” Technical Report No. TM-2002-211432 (NASA, 2002).
28.
28. See http://crgis.ndc.nasa.gov/historic/Low_Turbulence_Pressure_Tunnel for a history of the Low Turbulence Pressure Tunnel, 2013.
29.
29. R. C. Pankhurst, Nature (London) 238, 375 (1972).
http://dx.doi.org/10.1038/238375a0
30.
30. H. Schlichting, “The variable density high speed cascade wind tunnel of the Deutsche Forschungsanstalt für Luftfahrt Braunschweig,” Technical Report No. 91 (Advisory Group for Aeronautical Research and Development, 1956).
31.
31. C. B. Millikan, J. E. Smith, and R. W. Bell, J. Aeronaut. Sci. 15, 69 (1948).
http://dx.doi.org/10.2514/8.11508
32.
32. A. L. Kistler and T. Vrebalovich, J. Fluid Mech. 26, 37 (1966).
http://dx.doi.org/10.1017/S0022112066001071
33.
33. E. Achenbach, J. Fluid Mech. 54, 565 (1972).
http://dx.doi.org/10.1017/S0022112072000874
34.
34. H. Försching, E. Melzer, and G. Schewe, “Ein neuer Windkanal für gebäudeaerodynamische und-aeroelastische Untersuchungen bei Reynoldszahlen bis 107,” Technical Report No. IB 232-81 J 02 (DFVLR-AVA, 1981).
35.
35. G. Schewe, J. Fluids Struct. 3, 327 (1989).
http://dx.doi.org/10.1016/S0889-9746(89)80015-5
36.
36. G. Schewe, J. Fluid Mech. 133, 265 (1983).
http://dx.doi.org/10.1017/S0022112083001913
37.
37. G. Schewe, J. Wind Eng. Ind. Aerodyn. 89, 1267 (2001).
http://dx.doi.org/10.1016/S0167-6105(01)00158-1
38.
38. M. V. Zagarola and A. J. Smits, Phys. Rev. Lett. 78, 239 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.239
39.
39. M. Hultmark, M. Vallikivi, S. Bailey, and A. J. Smits, Phys. Rev. Lett. 108, 094501 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.094501
40.
40. See http://www.princeton.edu/~gasdyn/Facilities/Facilities.html#SuperPipe for a brief description of the SuperPipe facility, 2013.
41.
41. R. L. Wilkins, J. Chem. Phys. 51, 853 (1969).
http://dx.doi.org/10.1063/1.1672089
42.
42. J. H. B. Hoogland, H. R. Van den Berg, and N. J. Trappeniers, Physica A 134, 169 (1985).
http://dx.doi.org/10.1016/0378-4371(85)90160-8
43.
43. H. Görtler, Z. angew. Math. Mech. 20, 138 (1940).
http://dx.doi.org/10.1002/zamm.19400200303
44.
44. W. R. Hawthorne, Proc. R. Soc. London, Ser. A 206, 374 (1951).
http://dx.doi.org/10.1098/rspa.1951.0076
45.
45. G. B. Schubauer and W. G. Spangenberg, NACA Technical Note 1, 1948.
46.
46. H. Makita, Fluid Dyn. Res. 8, 53 (1991).
http://dx.doi.org/10.1016/0169-5983(91)90030-M
47.
47. H. E. Cekli and W. van de Water, Exp. Fluids 49, 409 (2010).
http://dx.doi.org/10.1007/s00348-009-0812-5
48.
48. P. Knebel, A. Kittel, and J. Peinke, Exp. Fluids 51, 471 (2011).
http://dx.doi.org/10.1007/s00348-011-1056-8
49.
49. D. B. Blum et al., New J. Phys. 13, 113020 (2011).
http://dx.doi.org/10.1088/1367-2630/13/11/113020
50.
50. E. G. Kastrinakis and H. Eckelmann, J. Fluid Mech. 137, 165 (1983).
http://dx.doi.org/10.1017/S0022112083002347
51.
51. G. P. Bewley, “Using frozen hydrogen particles to observe rotating and quantized flows in liquid helium,” Ph.D. thesis, Yale University, 2006.
52.
52. N. T. Ouellette, H. Xu, and E. Bodenschatz, Exp. Fluids 40, 301 (2006).
http://dx.doi.org/10.1007/s00348-005-0068-7
53.
53. W. Snyder and J. Lumley, J. Fluid Mech. 41, 41 (1971).
http://dx.doi.org/10.1017/S0022112071001460
54.
54. Y. Sato and K. Yamamoto, J. Fluid Mech. 175, 183 (1987).
http://dx.doi.org/10.1017/S0022112087000351
55.
55. S. Ayyalasomayajula, A. Gylfason, L. Collins, E. Bodenschatz, and Z. Warhaft, Phys. Rev. Lett. 97, 144507 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.144507
56.
56. M. Hultmark, A. Ashok, and A. J. Smits, Meas. Sci. Technol. 22, 055401 (2011).
http://dx.doi.org/10.1088/0957-0233/22/5/055401
57.
57. R. A. Antonia and P. Burattini, J. Fluid Mech. 550, 175 (2006).
http://dx.doi.org/10.1017/S0022112005008438
58.
58. G. P. Bewley, K. Chang, and E. Bodenschatz, Phys. Fluids 24, 061702 (2012).
http://dx.doi.org/10.1063/1.4726077
59.
59. G. Comte-Bellot and S. Corrsin, J. Fluid Mech. 48, 273 (1971).
http://dx.doi.org/10.1017/S0022112071001599
60.
60. T. Kurian and J. H. M. Fransson, Fluid Dyn. Res. 41, 1 (2009).
http://dx.doi.org/10.1088/0169-5983/41/2/021403
61.
61. P.-Å. Krogstad and P. A. Davidson, J. Fluid Mech. 642, 373 (2010).
http://dx.doi.org/10.1017/S0022112009991807
62.
62. J. L. Lumley, Adv. Appl. Mech. 18, 123 (1978).
http://dx.doi.org/10.1016/S0065-2156(08)70266-7
63.
63. S. B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, England, 2000).
64.
64. G. A. Voth, A. La Porta, A. M. Crawford, J. Alexander, and E. Bodenschatz, J. Fluid Mech. 469, 121 (2002).
http://dx.doi.org/10.1017/S0022112002001842
65.
65. R. Zimmermann, H. Xu, Y. Gasteuil, M. Bourgoin, R. Volk, J.-F. Pinton, and E. Bodenschatz, Rev. Sci. Instrum. 81, 055112 (2010).
http://dx.doi.org/10.1063/1.3428738
66.
66. K. Chang, G. P. Bewley, and E. Bodenschatz, J. Fluid Mech. 692, 464 (2012).
http://dx.doi.org/10.1017/jfm.2011.529
67.
67. A. Ashok, S. Bailey, M. Hultmark, and A. Smits, Exp. Fluids 53, 1713 (2012).
http://dx.doi.org/10.1007/s00348-012-1382-5
68.
68. S. G. Saddoughi and S. V. Veeravalli, J. Fluid Mech. 268, 333 (1994).
http://dx.doi.org/10.1017/S0022112094001370
69.
69. L. Mydlarski and Z. Warhaft, J. Fluid Mech. 320, 331 (1996).
http://dx.doi.org/10.1017/S0022112096007562
70.
70. D. A. Donzis and K. R. Sreenivasan, J. Fluid Mech. 657, 171 (2010).
http://dx.doi.org/10.1017/S0022112010001400
71.
71. X. Shen and Z. Warhaft, Phys. Fluids 14, 370 (2002).
http://dx.doi.org/10.1063/1.1421059
72.
72. B. R. Pearson and R. A. Antonia, J. Fluid Mech. 444, 343 (2001).
http://dx.doi.org/10.1017/S0022112001005511
73.
73. R. E. G. Poorte and A. Biesheuvel, J. Fluid Mech. 461, 127 (2002).
http://dx.doi.org/10.1017/S0022112002008273
74.
74. J. R. de Bruyn, E. Bodenschatz, S. W. Morris, S. P. Trainoff, Y. Hu, D. S. Cannell, and G. Ahlers, Rev. Sci. Instrum. 67, 2043 (1996).
http://dx.doi.org/10.1063/1.1147511
http://aip.metastore.ingenta.com/content/aip/journal/rsi/85/9/10.1063/1.4896138
Loading
/content/aip/journal/rsi/85/9/10.1063/1.4896138
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/85/9/10.1063/1.4896138
2014-09-30
2016-09-27

Abstract

The Variable Density Turbulence Tunnel at the Max Planck Institute for Dynamics and Self-Organization in Göttingen, Germany, produces very high turbulence levels at moderate flow velocities, low power consumption, and adjustable kinematic viscosity between 10−4 m2/s and 10−7 m2/s. The Reynolds number can be varied by changing the pressure or flow rate of the gas or by using different non-flammable gases including air. The highest kinematic viscosities, and hence lowest Reynolds numbers, are reached with air or nitrogen at 0.1 bar. To reach the highest Reynolds numbers the tunnel is pressurized to 15 bars with the dense gas sulfur hexafluoride (SF). Turbulence is generated at the upstream ends of two measurement sections with grids, and the evolution of this turbulence is observed as it moves down the length of the sections. We describe the instrumentation presently in operation, which consists of the tunnel itself, classical grid turbulence generators, and state-of-the-art nano-fabricated hot-wire anemometers provided by Princeton University [M. Vallikivi, M. Hultmark, S. C. C. Bailey, and A. J. Smits, Exp. Fluids51, 1521 (2011)]. We report measurements of the characteristic scales of the flow and of turbulent spectra up to Taylor Reynolds number ≈ 1600, higher than any other grid-turbulence experiment. We also describe instrumentation under development, which includes an active grid and a Lagrangian particle tracking system that moves down the length of the tunnel with the mean flow. In this configuration, the properties of the turbulence are adjustable and its structure is resolvable up to ≈ 8000.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/85/9/1.4896138.html;jsessionid=hgNYG3MdRiaAyzs2AxdCS4GT.x-aip-live-02?itemId=/content/aip/journal/rsi/85/9/10.1063/1.4896138&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/85/9/10.1063/1.4896138&pageURL=http://scitation.aip.org/content/aip/journal/rsi/85/9/10.1063/1.4896138'
Right1,Right2,Right3,