Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/86/1/10.1063/1.4905330
1.
1.E. Meijering, O. Dzyubachyk, I. Smal et al., “Methods for cell and particle tracking,” Methods Enzymol. 504, 183200 (2012).
http://dx.doi.org/10.1016/b978-0-12-391857-4.00009-4
2.
2.K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid, and G. Danuser, “Robust single-particle tracking in live-cell time-lapse sequences,” Nat. Methods 5, 695702 (2008).
http://dx.doi.org/10.1038/nmeth.1237
3.
3.D. Loerke, M. Mettlen, D. Yarar, K. Jaqaman, H. Jaqaman, G. Danuser, and S. L. Schmid, “Cargo and dynamin regulate clathrin-coated pit maturation,” PLoS Biol. 7, e1000057 (2009).
http://dx.doi.org/10.1371/journal.pbio.1000057
4.
4.A. Matov, K. Applegate, P. Kumar, C. Thoma, W. Krek, G. Danuser, and T. Wittmann, “Analysis of microtubule dynamic instability using a plus end growth marker,” Nat. Methods 7, 761-768 (2010).
http://dx.doi.org/10.1038/nmeth.1493
5.
5.S. Gierke and T. Wittmann, “EB1-recruited microtubule +TIP complexes coordinate protrusion dynamics during 3D epithelial remodeling,” Curr. Biol. 22, 753762 (2012).
http://dx.doi.org/10.1016/j.cub.2012.02.069
6.
6.A. Fujioka, K. Terai, R. E. Itoh, K. Aoki, T. Nakamura, S. Kuroda, E. Nishida, and M. Matsuda, “Dynamics of the Ras/ERK MAPK cascade as monitored by fluorescent probes,” J. Biol. Chem. 281, 89178926 (2006).
http://dx.doi.org/10.1074/jbc.M509344200
7.
7.B. R. Parry, I. V. Surovtsev, M. T. Cabeen, C. S. O’Hern, E. R. Dufresne, and C. Jacobs-Wagner, “The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity,” Cell 156, 183194 (2014).
http://dx.doi.org/10.1016/j.cell.2013.11.028
8.
8.L. Sironi, J. Solon, C. Conrad, T. U. Mayer, D. Brunner, and J. Ellenberg, “Automatic quantificatikon of microtubule dynamics enables RNAi-screening of new mitotic spindle regulators,” Cytoskeleton 68, 266278 (2011).
http://dx.doi.org/10.1002/cm.20510
9.
9.H. M. S. Chin, K. Nandra, J. Clark, and V. M. Draviam, “Need for multi-scale systems to determine spindle orientation regulators relevant to the initiation, progression and promotion of cancers,” Front. Physiol. 5, 278 (2014).
http://dx.doi.org/10.3389/fphys.2014.00278
10.
10.V. M. Draviam, I. Shapiro, B. Aldridge, and P. K. Sorger, “Misorientation and reduced stretching of aligned sister kinetochores promote chromosome missegregation in EB1- or APC-depleted cells,” EMBO J. 25, 28142827 (2006).
http://dx.doi.org/10.1038/sj.emboj.7601168
11.
11.A. M. Corrigan, R. L. Shrestha, I. Zulkipli, N. Hiroi, Y. Liu, N. Tamura, B. Yang, J. Patel, A. Funahashi, A. Donald, and V. M. Draviam, “Automated tracking of mitotic spindle pole positions shows that LGN is required for spindle rotation but not orientation maintenance,” Cell Cycle 12, 26432655 (2013).
http://dx.doi.org/10.4161/cc.25671
12.
12.A. Wilson, “Tunable optics,” Vision Systems DESIGN (PennWell, Tulsa, OK, 2010).
13.
13.B. F. Grewe, F. F. Voigt, M. van’t Hoff, and F. Helmchen, “Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens,” Biomed. Opt. Express 2, 20352046 (2011).
http://dx.doi.org/10.1364/BOE.2.002035
14.
14.F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, and J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express 21, 2101021026 (2013).
http://dx.doi.org/10.1364/OE.21.021010
15.
15.J. M. Jabbour, B. H. Malik, C. Olsovsky, R. Cuenca, S. Cheng, J. A. Jo, Y. S. L. Cheng, J. M. Wright, and K. C. Maitland, “Optical axial scanning in confocal microscopy using an electrically tunable lens,” Biomed. Opt. Express 5, 645652 (2014).
http://dx.doi.org/10.1364/BOE.5.000645
16.
16.A. Edelstein, N. Amodaj, K. Hoover, R. Vale, and N. Stuurman, “Computer control of microscopes using μ Manager,” Curr. Protoc. Mol. Biol. 14, 117 (2010).
http://dx.doi.org/10.1002/0471142727.mb1420s92
17.
17.N. Stuurman, N. Amodaj, and R. D. Vale, “Micro-manager: Open source software for light microscope imaging,” Microsc. Today 15(3), 4243 (2007), see http://www.micro-manager.org/.
18.
18.D. Takao, A. Taniguchi, T. Takeda, S. Sonobe, and S. Nonaka, “High-speed imaging of amoeboid movement using light-sheet microscope,” PLoS One 7, e50846 (2012).
http://dx.doi.org/10.1371/journal.pone.0050846
19.
19.Y. Fujimoto, M. Tokunaga, and K. Abe, “Microscope objective lens,” Japanese patent 2007-034020 (8 February 2007).
20.
20.C. Mattews and F. P. Cordelières, “MetroloJ: Ann ImageJ plugin to help mon itor microscopes health,” in Proceedings of the ImageJ User and Developer Conference 2010, pp. 16, available online at http://imagejdocu.tudor.lu/lib/exe/fetch.php?media=plugin:analysis:metroloj:matthews_cordelieres_- _imagej_user_developer_conference_-_2010.pdf.
21.
21.J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: An open-source platform for biological-image analysis,” Nat. Methods 9, 676682 (2012).
http://dx.doi.org/10.1038/nmeth.2019
22.
22.S. C. Schuyler and D. Pellman, “Microtubule ‘plus-end-tracking proteins’: The end is just the beginning,” Cell 105, 421424 (2001).
http://dx.doi.org/10.1016/S0092-8674(01)00364-6
23.
23.A. Akhmanova and M. O. Steinmetz, “Tracking the ends: A dynamic protein network controls the fate of microtubule tips,” Nat. Rev. Mol. Cell. Biol. 9, 309322 (2008).
http://dx.doi.org/10.1038/nrm2369
24.
24.K. T. Applegate, S. Besson, A. Matov, M. H. Bagonis, K. Jaqaman, and G. Danuser, “plusTipTracker: Quantitative image analysis software for the measurement of microtubule dynamics,” J. Struct. Biol. 176, 168184 (2011).
http://dx.doi.org/10.1016/j.jsb.2011.07.009
25.
25.R. L. Shrestha, N. Tamura, A. Fries, N. Levin, J. Clark, and V. M. Draviam, “TAO1 kinase maintains chromosomal stability by facilitating proper congression of chromosomes,” Open Biol. 4, 130108 (2014).
http://dx.doi.org/10.1098/rsob.130108
26.
26.X. W. Wang, X. X. Zhuang, D. Cao, Y. J. Chu, P. Yao, W. Liu, L. Liu, G. Adams, G. Fang, Z. Dou, X. Ding, Y. Huang, D. Wang, and X. Yao, “Mitotic regulator SKAP forms a link between kinetochore core complex KMN and dynamic spindle microtubules,” J. Biol. Chem. 287, 3938039390 (2012).
http://dx.doi.org/10.1074/jbc.M112.406652
27.
27.J. S. Trinauer, J. C. Canman, E. D. Salmon, and T. J. Mitchison, “EB1 targets to kinetochores with attached, polymerizing microtubules,” Mol. Biol. Cell 13, 43084316 (2002).
http://dx.doi.org/10.1091/mbc.E02-04-0236
28.
28.A. J. Dunsch, E. Linnane, F. A. Barr, and U. Gruneberg, “The astrin–kinastrin/SKAP complex localizes to microtubule plus ends and facilitates chromosome alignment,” J. Cell Biol. 192, 959968 (2011).
http://dx.doi.org/10.1083/jcb.201008023
29.
29.J. G. Ferreira, A. J. Pereira, A. Akhmanova, and H. Maiato, “Aurora B spatially regulates EB3 phosphorylation to coordinate daughter cell adhesion with cytokinesis,” J. Cell Biol. 201, 709724 (2013).
http://dx.doi.org/10.1083/jcb.201301131
30.
30.A. Brüning-Richardson, K. J. Langford, P. Ruane, T. Lee, J. M. Askham, and E. E. Morrison, “EB1 is required for spindle symmetry in mammalian mitosis,” PLoS One 6, e28884 (2011).
http://dx.doi.org/10.1371/journal.pone.0028884
http://aip.metastore.ingenta.com/content/aip/journal/rsi/86/1/10.1063/1.4905330
Loading
/content/aip/journal/rsi/86/1/10.1063/1.4905330
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/86/1/10.1063/1.4905330
2015-01-20
2016-12-04

Abstract

We provide an evaluation for an electrically tunable lens (ETL), combined with a microscope system, from the viewpoint of tracking intracellular protein complexes. We measured the correlation between the quantitative axial focus shift and the control current for ETL, and determined the stabilization time for refocusing to evaluate the electrical focusing behaviour of our system. We also confirmed that the change of relative magnification by the lens and associated resolution does not influence the ability to find intracellular targets. By applying the ETL system to observe intracellular structures and protein complexes, we confirmed that this system can obtain 10 nm order z-stacks, within video rate, while maintaining the quality of images and that this system has sufficient optical performance to detect the molecules.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/86/1/1.4905330.html;jsessionid=j1KIY4Zfkwyq9VNJ3BjlUrkw.x-aip-live-06?itemId=/content/aip/journal/rsi/86/1/10.1063/1.4905330&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/86/1/10.1063/1.4905330&pageURL=http://scitation.aip.org/content/aip/journal/rsi/86/1/10.1063/1.4905330'
Right1,Right2,Right3,