Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.E. Meijering, O. Dzyubachyk, I. Smal et al., “Methods for cell and particle tracking,” Methods Enzymol. 504, 183200 (2012).
2.K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid, and G. Danuser, “Robust single-particle tracking in live-cell time-lapse sequences,” Nat. Methods 5, 695702 (2008).
3.D. Loerke, M. Mettlen, D. Yarar, K. Jaqaman, H. Jaqaman, G. Danuser, and S. L. Schmid, “Cargo and dynamin regulate clathrin-coated pit maturation,” PLoS Biol. 7, e1000057 (2009).
4.A. Matov, K. Applegate, P. Kumar, C. Thoma, W. Krek, G. Danuser, and T. Wittmann, “Analysis of microtubule dynamic instability using a plus end growth marker,” Nat. Methods 7, 761-768 (2010).
5.S. Gierke and T. Wittmann, “EB1-recruited microtubule +TIP complexes coordinate protrusion dynamics during 3D epithelial remodeling,” Curr. Biol. 22, 753762 (2012).
6.A. Fujioka, K. Terai, R. E. Itoh, K. Aoki, T. Nakamura, S. Kuroda, E. Nishida, and M. Matsuda, “Dynamics of the Ras/ERK MAPK cascade as monitored by fluorescent probes,” J. Biol. Chem. 281, 89178926 (2006).
7.B. R. Parry, I. V. Surovtsev, M. T. Cabeen, C. S. O’Hern, E. R. Dufresne, and C. Jacobs-Wagner, “The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity,” Cell 156, 183194 (2014).
8.L. Sironi, J. Solon, C. Conrad, T. U. Mayer, D. Brunner, and J. Ellenberg, “Automatic quantificatikon of microtubule dynamics enables RNAi-screening of new mitotic spindle regulators,” Cytoskeleton 68, 266278 (2011).
9.H. M. S. Chin, K. Nandra, J. Clark, and V. M. Draviam, “Need for multi-scale systems to determine spindle orientation regulators relevant to the initiation, progression and promotion of cancers,” Front. Physiol. 5, 278 (2014).
10.V. M. Draviam, I. Shapiro, B. Aldridge, and P. K. Sorger, “Misorientation and reduced stretching of aligned sister kinetochores promote chromosome missegregation in EB1- or APC-depleted cells,” EMBO J. 25, 28142827 (2006).
11.A. M. Corrigan, R. L. Shrestha, I. Zulkipli, N. Hiroi, Y. Liu, N. Tamura, B. Yang, J. Patel, A. Funahashi, A. Donald, and V. M. Draviam, “Automated tracking of mitotic spindle pole positions shows that LGN is required for spindle rotation but not orientation maintenance,” Cell Cycle 12, 26432655 (2013).
12.A. Wilson, “Tunable optics,” Vision Systems DESIGN (PennWell, Tulsa, OK, 2010).
13.B. F. Grewe, F. F. Voigt, M. van’t Hoff, and F. Helmchen, “Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens,” Biomed. Opt. Express 2, 20352046 (2011).
14.F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, and J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express 21, 2101021026 (2013).
15.J. M. Jabbour, B. H. Malik, C. Olsovsky, R. Cuenca, S. Cheng, J. A. Jo, Y. S. L. Cheng, J. M. Wright, and K. C. Maitland, “Optical axial scanning in confocal microscopy using an electrically tunable lens,” Biomed. Opt. Express 5, 645652 (2014).
16.A. Edelstein, N. Amodaj, K. Hoover, R. Vale, and N. Stuurman, “Computer control of microscopes using μ Manager,” Curr. Protoc. Mol. Biol. 14, 117 (2010).
17.N. Stuurman, N. Amodaj, and R. D. Vale, “Micro-manager: Open source software for light microscope imaging,” Microsc. Today 15(3), 4243 (2007), see
18.D. Takao, A. Taniguchi, T. Takeda, S. Sonobe, and S. Nonaka, “High-speed imaging of amoeboid movement using light-sheet microscope,” PLoS One 7, e50846 (2012).
19.Y. Fujimoto, M. Tokunaga, and K. Abe, “Microscope objective lens,” Japanese patent 2007-034020 (8 February 2007).
20.C. Mattews and F. P. Cordelières, “MetroloJ: Ann ImageJ plugin to help mon itor microscopes health,” in Proceedings of the ImageJ User and Developer Conference 2010, pp. 16, available online at _imagej_user_developer_conference_-_2010.pdf.
21.J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: An open-source platform for biological-image analysis,” Nat. Methods 9, 676682 (2012).
22.S. C. Schuyler and D. Pellman, “Microtubule ‘plus-end-tracking proteins’: The end is just the beginning,” Cell 105, 421424 (2001).
23.A. Akhmanova and M. O. Steinmetz, “Tracking the ends: A dynamic protein network controls the fate of microtubule tips,” Nat. Rev. Mol. Cell. Biol. 9, 309322 (2008).
24.K. T. Applegate, S. Besson, A. Matov, M. H. Bagonis, K. Jaqaman, and G. Danuser, “plusTipTracker: Quantitative image analysis software for the measurement of microtubule dynamics,” J. Struct. Biol. 176, 168184 (2011).
25.R. L. Shrestha, N. Tamura, A. Fries, N. Levin, J. Clark, and V. M. Draviam, “TAO1 kinase maintains chromosomal stability by facilitating proper congression of chromosomes,” Open Biol. 4, 130108 (2014).
26.X. W. Wang, X. X. Zhuang, D. Cao, Y. J. Chu, P. Yao, W. Liu, L. Liu, G. Adams, G. Fang, Z. Dou, X. Ding, Y. Huang, D. Wang, and X. Yao, “Mitotic regulator SKAP forms a link between kinetochore core complex KMN and dynamic spindle microtubules,” J. Biol. Chem. 287, 3938039390 (2012).
27.J. S. Trinauer, J. C. Canman, E. D. Salmon, and T. J. Mitchison, “EB1 targets to kinetochores with attached, polymerizing microtubules,” Mol. Biol. Cell 13, 43084316 (2002).
28.A. J. Dunsch, E. Linnane, F. A. Barr, and U. Gruneberg, “The astrin–kinastrin/SKAP complex localizes to microtubule plus ends and facilitates chromosome alignment,” J. Cell Biol. 192, 959968 (2011).
29.J. G. Ferreira, A. J. Pereira, A. Akhmanova, and H. Maiato, “Aurora B spatially regulates EB3 phosphorylation to coordinate daughter cell adhesion with cytokinesis,” J. Cell Biol. 201, 709724 (2013).
30.A. Brüning-Richardson, K. J. Langford, P. Ruane, T. Lee, J. M. Askham, and E. E. Morrison, “EB1 is required for spindle symmetry in mammalian mitosis,” PLoS One 6, e28884 (2011).

Data & Media loading...


Article metrics loading...



We provide an evaluation for an electrically tunable lens (ETL), combined with a microscope system, from the viewpoint of tracking intracellular protein complexes. We measured the correlation between the quantitative axial focus shift and the control current for ETL, and determined the stabilization time for refocusing to evaluate the electrical focusing behaviour of our system. We also confirmed that the change of relative magnification by the lens and associated resolution does not influence the ability to find intracellular targets. By applying the ETL system to observe intracellular structures and protein complexes, we confirmed that this system can obtain 10 nm order z-stacks, within video rate, while maintaining the quality of images and that this system has sufficient optical performance to detect the molecules.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd