Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/86/11/10.1063/1.4934811
1.
1.J. R. Castrejón-Pita et al., Atomization Sprays 23, 571 (2013).
http://dx.doi.org/10.1615/AtomizSpr.2013007653
2.
2.A. A. Castrejón-Pita, J. R. Castrejón-Pita, and G. D. Martin, Rev. Sci. Instrum. 83, 115105 (2012).
http://dx.doi.org/10.1063/1.4766886
3.
3.S. F. Hon, K. W. Kwok, H. L. Li, and H. Y. Ng, Rev. Sci. Instrum. 81, 065102 (2010).
http://dx.doi.org/10.1063/1.3442526
4.
4.J. Park et al., Nat. Mater. 6, 782 (2007).
http://dx.doi.org/10.1038/nmat1974
5.
5.A. U. Chen and O. A. Basaran, Phys. Fluids 14, L1 (2002).
http://dx.doi.org/10.1063/1.1427441
6.
6.K. Silverbrook et al., U.S. patent 7621620 B2 (24 November 2009).
7.
7.R. Bergmann, D. van der Meer, S. Gekle, A. van der Bos, and D. Lohse, J. Fluid Mech. 633, 381 (2009).
http://dx.doi.org/10.1017/S0022112009006983
8.
8.O. A. Basaran, AIChE J. 48, 1842 (2002).
http://dx.doi.org/10.1002/aic.690480902
9.
9.L. Martin-Banderas et al., Small 7, 688 (2005).
http://dx.doi.org/10.1002/smll.200500087
10.
10.G. M. H. Meesters, P. H. W. Vercoulen, J. C. M. Marijnissen, and B. Scarlett, J. Aerosol Sci. 23, 37 (1992).
http://dx.doi.org/10.1016/0021-8502(92)90316-N
11.
11.H. P. Le, J. Imaging Sci. Technol. 42, 49 (1998).
12.
12.A. Asai, T. Hara, and I. Endo, Jpn. J. Appl. Phys., Part 1 26, 1794 (1987).
http://dx.doi.org/10.1143/JJAP.26.1794
13.
13.H. Dong, W. W. Carr, and J. F. Morris, Rev. Sci. Instrum. 77, 085101 (2006).
http://dx.doi.org/10.1063/1.2234853
14.
14.A. A. Castrejón-Pita, J. R. Castrejón-Pita, and I. M. Hutchings, Phys. Rev. Lett. 108, 074506 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.074506
15.
15.J. R. Castrejón-Pita, N. F. Morrison, O. G. Harlen, G. D. Martin, and I. M. Hutchings, Phys. Rev. E 83, 036306 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.036306
16.
16.B. Derby, Annu. Rev. Mater. Res. 40, 395 (2010).
http://dx.doi.org/10.1146/annurev-matsci-070909-104502
17.
17.G. H. McKinley and M. Renardy, Phys. Fluids 23, 127101 (2011).
http://dx.doi.org/10.1063/1.3663616
18.
18.A. U. Chen, P. K. Notz, and O. A. Basaran, Phys. Rev. E 88, 174501 (2002).
http://dx.doi.org/10.1103/physrevlett.88.174501
19.
19.H. Dong, W. W. Carr, and J. F. Morris, Phys. Fluids. 18, 072102 (2006).
http://dx.doi.org/10.1063/1.2217929
20.
20.K. Silverbrook, “Inkjet nozzle assembly with low density suspended heater element,” U.S. patent 7980673 (19 July 2011).
21.
21.K. Silverbrook, “Nozzle arrangement with movable ink ejection structure,” U.S. patent 7524033 (28 April 2009).
22.
22.The Technology Partnership Plc., “Ink jet controller of ejector,” U.S. patent 20120274686 (1 November 2012).
23.
23.The Technology Partnership Plc., “Electronic spray device improvements,” U.S. patent 20130277446 (24 October 2013).
24.
24.S. F. Weber et al., Rev. Sci. Instrum. 82, 075106 (2011).
http://dx.doi.org/10.1063/1.3606440
http://aip.metastore.ingenta.com/content/aip/journal/rsi/86/11/10.1063/1.4934811
Loading
/content/aip/journal/rsi/86/11/10.1063/1.4934811
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/86/11/10.1063/1.4934811
2015-11-03
2016-12-03

Abstract

In this paper, a novel mechanism allowing greater control over the formation of droplets is presented. This is achieved via the use of a dynamic nozzle of adjustable diameter. It is demonstrated that, by using such a nozzle, it is possible to greatly modify the formation and breakup of the ligament behind the main drop, leading to an overall reduction in the number of satellite droplets. Furthermore, by adjusting the delay between the beginning of the forming of the drop and the start of the nozzle constriction, a greater control over both the number of satellites and the size of the main drop can be achieved. It is also shown that only a minimal reduction of the nozzle’s effective diameter is required in order to exploit the positive effects of the technique presented here. This opens the possibility of incorporating the technique into current droplet generator systems, e.g., via the use of piezoelectric driven nozzles or other micro-mechanical actuation technology.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/86/11/1.4934811.html;jsessionid=l6HdFbjzuAA2MNqY53E_V0Qk.x-aip-live-02?itemId=/content/aip/journal/rsi/86/11/10.1063/1.4934811&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/86/11/10.1063/1.4934811&pageURL=http://scitation.aip.org/content/aip/journal/rsi/86/11/10.1063/1.4934811'
Right1,Right2,Right3,