Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/86/11/10.1063/1.4935584
1.
1.Y. Martin and H. K. Wickramasinghe, “Toward accurate metrology with scanning force microscopes,” J. Vac. Sci. Technol., B 13, 2335 (1995).
http://dx.doi.org/10.1116/1.588069
2.
2.G. Borionettia, A. Bazzalia, and R. Orizioa, “Atomic force microscopy: A powerful tool for surface defect and morphology inspection in semiconductor industry,” Eur. Phys. J.: Appl. Phys. 27(1-3), 101106 (2004).
http://dx.doi.org/10.1051/epjap:2004129
3.
3.H. Sadeghian, N. Koster, and T. v. d. Dool, “Introduction of a high throughput SPM for defect inspection and process control,” Proc. SPIE 8681 868127 (2013).
http://dx.doi.org/10.1117/12.2019389
4.
4.H. Sadeghian, T. C. v. d. Dool, W. E. Crowcombe, R. W. Herfst, J. Winters, G. F. I. J. Kramer, and N. B. Koster, “Parallel, miniaturized scanning probe microscope for defect inspection and review,” Proc. SPIE 9050, 90501B (2014).
http://dx.doi.org/10.1117/12.2045557
5.
5.H. Sadeghian, B. Dekker, R. Herfst, J. Winters, A. Eigenraam, R. Rijnbeek, and N. Nulkes, “Demonstration of parallel scanning probe microscope for high throughput metrology and inspection,” Proc. SPIE 9424, 94240O (2015).
http://dx.doi.org/10.1117/12.2085495
6.
6.T. Andoa, T. Uchihashi, and T. Fukuma, “High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes,” Prog. Surf. Sci. 83(7-9), 337437 (2008).
http://dx.doi.org/10.1016/j.progsurf.2008.09.001
7.
7.M. Imamura, T. Uchihashi, T. Ando, A. Leifert, U. Simon, A. D. Malay, and A. J. G. Heddle, “Probing structural dynamics of an artificial protein cage using high-speed atomic force microscopy,” Nano Lett. 15(2), 13311335 (2015).
http://dx.doi.org/10.1021/nl5045617
8.
8.A. P. Nievergelt, B. W. Erickson, N. Hosseini, J. D. Adams, and G. E. Fantner, “Studying biological membranes with extended range high-speed atomic force microscopy,” Sci. Rep. 5, 11987 (2015).
http://dx.doi.org/10.1038/srep11987
9.
9.R. J. F. Bijster, J. d. Vreugd, and A. H. Sadeghian, “Phase lag deduced information in photo-thermal actuation for nano-mechanical systems characterization,” Appl. Phys. Lett. 105, 073109 (2014).
http://dx.doi.org/10.1063/1.4893461
10.
10.R. Enning, D. Ziegler, A. Nievergelt, R. Friedlos, K. Venkataramani, and A. Stemmer, “A high frequency sensor for optical beam deflection atomic force microscopy,” Rev. Sci. Instrum. 82(4), 043705 (2011).
http://dx.doi.org/10.1063/1.3575322
11.
11.R. Herfst, W. Klop, M. Eschen, T. v. d. Dool, N. Koster, and H. Sadeghian, “Systematic characterization of optical beam deflection measurement system for micro and nanomechanical systems,” Measurement 56, 104116 (2014).
http://dx.doi.org/10.1016/j.measurement.2014.06.016
12.
12.G. Schitter, P. Menold, H. Knapp, F. Allgöwer, and A. Stemmer, “High performance feedback for fast scanning atomic force microscopes,” Rev. Sci. Instrum. 72(8), 33203327 (2001).
http://dx.doi.org/10.1063/1.1387253
13.
13.T. Fukuma, Y. Okazaki, N. Kodera, T. Uchihashi, and T. Ando, “High resonance frequency force microscope scanner using inertia balance support,” Appl. Phys. Lett. 92, 243119 (2008).
http://dx.doi.org/10.1063/1.2951594
14.
14.B. J. Kenton and K. K. Leang, “Design and control of a three-axis serial-kinematic high-bandwidth nanopositioner,” IEEE/ASME Trans. Mechatronics 17(2), 356369 (2011).
http://dx.doi.org/10.1109/TMECH.2011.2105499
15.
15.Y. K. Yong, S. O. R. Moheimani, B. J. Kenton, and K. K. Leang, “High-speed flexure-guided nanopositioning: Mechanical design and control issues,” Rev. Sci. Instrum. 83, 121101 (2012).
http://dx.doi.org/10.1063/1.4765048
16.
16.T. Ando, T. Uchihashi, and N. Kodera, “High-speed atomic force microscopy,” Jpn. J. Appl. Phys., Part 1 51, 08KA02 (2012).
http://dx.doi.org/10.7567/JJAP.51.08KA02
17.
17.G. Schitter and A. Stemmer, “Identification and open-loop tracking control of a piezoelectric tube scanner for high-speed scanning-probe microscopy,” IEEE Trans. Control Syst. Technol. 12(3), 449454 (2004).
http://dx.doi.org/10.1109/TCST.2004.824290
18.
18.M. J. Rost, P. S. L. Crama, E. v. Tol, G. B. E. M. v. Velzen-Williams, C. F. Overgauw, H. t. Horst, H. Dekker, B. Okhuijsen, M. Seynen, A. Vijftigschild, P. Han, A. J. Katan, K. Schoots, R. Schumm, W. v. Loo, T. H. Oosterkamp, and J. W. M. Frenken, “Scanning probe microscopes go video rate and beyond,” Rev. Sci. Instrum. 76, 053710 (2005).
http://dx.doi.org/10.1063/1.1915288
19.
19.F. Tabak, E. C. M. Disseldorp, G. H. Wortel, A. J. Katan, M. B. S. Hesselberth, T. H. Oosterkamp, J. Frenken, and W. Spengen, “MEMS-based fast scanning probe microscopes,” Ultramicroscopy 110(6), 599604 (2010).
http://dx.doi.org/10.1016/j.ultramic.2010.02.018
20.
20.I. S. Bozchalooi, K. Youcef-Toumi, D. J. Burns, and A. G. E. Fantner, “Compensator design for improved counterbalancing in high speed atomic force microscopy,” Rev. Sci. Instrum. 82(11), 113712 (2011).
http://dx.doi.org/10.1063/1.3663070
http://aip.metastore.ingenta.com/content/aip/journal/rsi/86/11/10.1063/1.4935584
Loading
/content/aip/journal/rsi/86/11/10.1063/1.4935584
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/86/11/10.1063/1.4935584
2015-11-16
2016-12-05

Abstract

One of the major limitations in the speed of the atomic force microscope(AFM) is the bandwidth of the mechanical scanning stage, especially in the vertical () direction. According to the design principles of “light and stiff” and “static determinacy,” the bandwidth of the mechanical scanner is limited by the first eigenfrequency of the AFM head in case of tip scanning and by the sample stage in terms of sample scanning. Due to stringent requirements of the system, simply pushing the first eigenfrequency to an ever higher value has reached its limitation. We have developed a miniaturized, high speed AFMscanner in which the dynamics of the -scanning stage are made insensitive to its surrounding dynamics via suspension of it on specific dynamically determined points. This resulted in a mechanical bandwidth as high as that of the z-actuator (50 kHz) while remaining insensitive to the dynamics of its base and surroundings. The scanner allows a practical z scan range of 2.1 m. We have demonstrated the applicability of the scanner to the high speed scanning of nanostructures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/86/11/1.4935584.html;jsessionid=pRXQw8mL3SuVhHLj2qN24yoI.x-aip-live-02?itemId=/content/aip/journal/rsi/86/11/10.1063/1.4935584&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/86/11/10.1063/1.4935584&pageURL=http://scitation.aip.org/content/aip/journal/rsi/86/11/10.1063/1.4935584'
Right1,Right2,Right3,