Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Y. Martin and H. K. Wickramasinghe, “Toward accurate metrology with scanning force microscopes,” J. Vac. Sci. Technol., B 13, 2335 (1995).
2.G. Borionettia, A. Bazzalia, and R. Orizioa, “Atomic force microscopy: A powerful tool for surface defect and morphology inspection in semiconductor industry,” Eur. Phys. J.: Appl. Phys. 27(1-3), 101106 (2004).
3.H. Sadeghian, N. Koster, and T. v. d. Dool, “Introduction of a high throughput SPM for defect inspection and process control,” Proc. SPIE 8681 868127 (2013).
4.H. Sadeghian, T. C. v. d. Dool, W. E. Crowcombe, R. W. Herfst, J. Winters, G. F. I. J. Kramer, and N. B. Koster, “Parallel, miniaturized scanning probe microscope for defect inspection and review,” Proc. SPIE 9050, 90501B (2014).
5.H. Sadeghian, B. Dekker, R. Herfst, J. Winters, A. Eigenraam, R. Rijnbeek, and N. Nulkes, “Demonstration of parallel scanning probe microscope for high throughput metrology and inspection,” Proc. SPIE 9424, 94240O (2015).
6.T. Andoa, T. Uchihashi, and T. Fukuma, “High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes,” Prog. Surf. Sci. 83(7-9), 337437 (2008).
7.M. Imamura, T. Uchihashi, T. Ando, A. Leifert, U. Simon, A. D. Malay, and A. J. G. Heddle, “Probing structural dynamics of an artificial protein cage using high-speed atomic force microscopy,” Nano Lett. 15(2), 13311335 (2015).
8.A. P. Nievergelt, B. W. Erickson, N. Hosseini, J. D. Adams, and G. E. Fantner, “Studying biological membranes with extended range high-speed atomic force microscopy,” Sci. Rep. 5, 11987 (2015).
9.R. J. F. Bijster, J. d. Vreugd, and A. H. Sadeghian, “Phase lag deduced information in photo-thermal actuation for nano-mechanical systems characterization,” Appl. Phys. Lett. 105, 073109 (2014).
10.R. Enning, D. Ziegler, A. Nievergelt, R. Friedlos, K. Venkataramani, and A. Stemmer, “A high frequency sensor for optical beam deflection atomic force microscopy,” Rev. Sci. Instrum. 82(4), 043705 (2011).
11.R. Herfst, W. Klop, M. Eschen, T. v. d. Dool, N. Koster, and H. Sadeghian, “Systematic characterization of optical beam deflection measurement system for micro and nanomechanical systems,” Measurement 56, 104116 (2014).
12.G. Schitter, P. Menold, H. Knapp, F. Allgöwer, and A. Stemmer, “High performance feedback for fast scanning atomic force microscopes,” Rev. Sci. Instrum. 72(8), 33203327 (2001).
13.T. Fukuma, Y. Okazaki, N. Kodera, T. Uchihashi, and T. Ando, “High resonance frequency force microscope scanner using inertia balance support,” Appl. Phys. Lett. 92, 243119 (2008).
14.B. J. Kenton and K. K. Leang, “Design and control of a three-axis serial-kinematic high-bandwidth nanopositioner,” IEEE/ASME Trans. Mechatronics 17(2), 356369 (2011).
15.Y. K. Yong, S. O. R. Moheimani, B. J. Kenton, and K. K. Leang, “High-speed flexure-guided nanopositioning: Mechanical design and control issues,” Rev. Sci. Instrum. 83, 121101 (2012).
16.T. Ando, T. Uchihashi, and N. Kodera, “High-speed atomic force microscopy,” Jpn. J. Appl. Phys., Part 1 51, 08KA02 (2012).
17.G. Schitter and A. Stemmer, “Identification and open-loop tracking control of a piezoelectric tube scanner for high-speed scanning-probe microscopy,” IEEE Trans. Control Syst. Technol. 12(3), 449454 (2004).
18.M. J. Rost, P. S. L. Crama, E. v. Tol, G. B. E. M. v. Velzen-Williams, C. F. Overgauw, H. t. Horst, H. Dekker, B. Okhuijsen, M. Seynen, A. Vijftigschild, P. Han, A. J. Katan, K. Schoots, R. Schumm, W. v. Loo, T. H. Oosterkamp, and J. W. M. Frenken, “Scanning probe microscopes go video rate and beyond,” Rev. Sci. Instrum. 76, 053710 (2005).
19.F. Tabak, E. C. M. Disseldorp, G. H. Wortel, A. J. Katan, M. B. S. Hesselberth, T. H. Oosterkamp, J. Frenken, and W. Spengen, “MEMS-based fast scanning probe microscopes,” Ultramicroscopy 110(6), 599604 (2010).
20.I. S. Bozchalooi, K. Youcef-Toumi, D. J. Burns, and A. G. E. Fantner, “Compensator design for improved counterbalancing in high speed atomic force microscopy,” Rev. Sci. Instrum. 82(11), 113712 (2011).

Data & Media loading...


Article metrics loading...



One of the major limitations in the speed of the atomic force microscope(AFM) is the bandwidth of the mechanical scanning stage, especially in the vertical () direction. According to the design principles of “light and stiff” and “static determinacy,” the bandwidth of the mechanical scanner is limited by the first eigenfrequency of the AFM head in case of tip scanning and by the sample stage in terms of sample scanning. Due to stringent requirements of the system, simply pushing the first eigenfrequency to an ever higher value has reached its limitation. We have developed a miniaturized, high speed AFMscanner in which the dynamics of the -scanning stage are made insensitive to its surrounding dynamics via suspension of it on specific dynamically determined points. This resulted in a mechanical bandwidth as high as that of the z-actuator (50 kHz) while remaining insensitive to the dynamics of its base and surroundings. The scanner allows a practical z scan range of 2.1 m. We have demonstrated the applicability of the scanner to the high speed scanning of nanostructures.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd