Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/86/12/10.1063/1.4937352
1.
1.M. Astrua and M. Pisani, Metrologia 46, 674 (2009).
http://dx.doi.org/10.1088/0026-1394/46/6/010
2.
2.T. Yandayan, B. Ozgur, N. Karaboce, and O. Yaman, Meas. Sci. Technol. 23, 094006 (2012).
http://dx.doi.org/10.1088/0957-0233/23/9/094006
3.
3.A. Just, M. Krause, R. Probst, and R. Wittekopf, Metrologia 40, 288 (2003).
http://dx.doi.org/10.1088/0026-1394/40/5/011
4.
4.T. Yandayan, S. A. Akgoz, and M. Asar, Meas. Sci. Technol. 25, 015010 (2014).
http://dx.doi.org/10.1088/0957-0233/25/1/015010
5.
5.R. D. Geckeler, O. Kranz, A. Just, and M. Krause, Adv. Opt. Technol. 1(6), 427439 (2012).
http://dx.doi.org/10.1515/aot-2012-0048
6.
6.O. Kranz, R. D. Geckeler, A. Just, and M. Krause, Proc. SPIE 8789, 87890D-1 (2013).
http://dx.doi.org/10.1117/12.2020279
7.
7.D. Shu, J. Qian, W. Liu, S. Kearney, J. Anton, J. Sullivan, and L. Assoufid, Proc. SPIE 9206, 92060H-1 (2014).
http://dx.doi.org/10.1117/12.2062216
8.
8.M. Pisani and M. Astrua, Appl. Opt. 45, 1725 (2006).
http://dx.doi.org/10.1364/AO.45.001725
9.
9.R. D. Geckeler and A. Just, Meas. Sci. Technol. 25, 105009 (2014).
http://dx.doi.org/10.1088/0957-0233/25/10/105009
10.
10.F. Siewert, J. Buchheim, T. Zeschke, M. Stormer, G. Falkenberg, and R. Sankarid, J. Synchrotron Radiat. 21, 968 (2014).
http://dx.doi.org/10.1107/S1600577514016221
11.
11.T. Yandayan, R. D. Geckeler, and F. Siewert, Proc. SPIE 9206, 92060F-1 (2015).
http://dx.doi.org/10.1117/12.2060953
12.
12.A. Schindler, T. Haensel, A. Nickel, H. Thomas, H. Lammert, and F. Siewert, Proc. SPIE 5180, 64 (2004).
http://dx.doi.org/10.1117/12.506505
13.
13.L. Peverini, I. V. Kozhevnikov, A. Rommeveaux, P. V. Vaerenbergh, L. Claustre, S. Guillet, J.-Y. Massonnat, E. Ziegler, and J. Susini, Nucl. Instrum. Methods Phys. Res., Sect. A 616, 115 (2010).
http://dx.doi.org/10.1016/j.nima.2009.10.169
14.
14.K. Yamauchi, H. Mimura, K. Inagaki, and Y. Mori, Rev. Sci. Instrum. 73, 4028 (2002).
http://dx.doi.org/10.1063/1.1510573
15.
15.S. G. Alcock, K. J. S. Sawhney, S. Scott, U. Pedersen, R. Walton, F. Siewert, T. Zeschke, F. Senf, T. Noll, and H. Lammert, Nucl. Instrum. Methods Phys. Res., Sect. A 616, 224 (2010).
http://dx.doi.org/10.1016/j.nima.2009.10.137
16.
16.A. Rommeveaux, M. Thomasset, and D. Cocco, in Modern Developments in X-Ray and Neutron Optics (Springer, Berlin, 2008), Vol. 5 Chap. X.
17.
17.S. G. Alcock and K. J. S. Sawhney, Proc. SPIE 6704, 67040E-1 (2007).
http://dx.doi.org/10.1117/12.773355
http://aip.metastore.ingenta.com/content/aip/journal/rsi/86/12/10.1063/1.4937352
Loading
/content/aip/journal/rsi/86/12/10.1063/1.4937352
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/86/12/10.1063/1.4937352
2015-12-14
2016-10-01

Abstract

Accurate generation of small angles is of vital importance for calibrating angle-based metrology instruments used in a broad spectrum of industries including mechatronics, nano-positioning, and optic fabrication. We present a novel, piezo-driven, flexure device capable of reliably generating micro- and nanoradian angles. Unlike many such instruments, Diamond Light Source’s nano-angle generator (Diamond-NANGO) does not rely on two separate actuators or rotation stages to provide coarse and fine motion. Instead, a single Physik Instrumente NEXLINE “PiezoWalk” actuator provides millimetres of travel with nanometre resolution. A cartwheel flexure efficiently converts displacement from the linear actuator into rotary motion with minimal parasitic errors. Rotation of the flexure is directly measured via a Magnescale “Laserscale” angle encoder. Closed-loop operation of the PiezoWalk actuator, using high-speed feedback from the angle encoder, ensures that the Diamond-NANGO’s output drifts by only ∼0.3 nrad rms over ∼30 min. We show that the Diamond-NANGO can reliably move with unprecedented 1 nrad (∼57 ndeg) angular increments over a range of >7000 rad. An autocollimator, interferometer, and capacitive displacement sensor are used to independently confirm the Diamond-NANGO’s performance by simultaneously measuring the rotation of a reflective cube.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/86/12/1.4937352.html;jsessionid=ib_HYTVfi2zzfAzykHuMGnl_.x-aip-live-03?itemId=/content/aip/journal/rsi/86/12/10.1063/1.4937352&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/86/12/10.1063/1.4937352&pageURL=http://scitation.aip.org/content/aip/journal/rsi/86/12/10.1063/1.4937352'
Right1,Right2,Right3,