Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803807 (2002).
2.F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. De Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Decleva, J. B. Greenwood, F. Martín, and M. Nisoli, “Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses,” Science 346, 336339 (2014).
3.S. Neppl, R. Ernstorfer, A. L. Cavalieri, C. Lemell, G. Wachter, E. Magerl, E. M. Bothschafter, M. Jobst, M. Hofstetter, U. Kleineberg, J. V. Barth, D. Menzel, J. Burgdörfer, P. Feulner, F. Krausz, and R. Kienberger, “Direct observation of electron propagation and dielectric screening on the atomic length scale,” Nature 517, 342346 (2015).
4.M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, “X-ray pulses approaching the attosecond frontier,” Science 291, 19231927 (2001).
5.M. Schultze, A. Wirth, I. Grguras, M. Uiberacker, T. Uphues, A. J. Verhoef, J. Gagnon, M. Hofstetter, U. Kleineberg, E. Goulielmakis, and F. Krausz, “State-of-the-art attosecond metrology,” J. Electron Spectrosc. Relat. Phenom. 184, 6877 (2011).
6.F. M. Böttcher, B. Manschwetus, H. Rottke, N. Zhavoronkov, Z. Ansari, and W. Sandner, “Interferometric long-term stabilization of a delay line: A tool for pump-probe photoelectron-photoion-coincidence spectroscopy on the attosecond time scale,” Appl. Phys. B 91, 287293 (2008).
7.P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Auge, P. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 16891692 (2001).
8.H. Mashiko, M. J. Bell, A. R. Beck, M. J. Abel, P. M. Nagel, C. P. Steiner, J. Robinson, D. M. Neumark, and S. R. Leone, “Tunable frequency-controlled isolated attosecond pulses characterized by either 750 nm or 400 nm wavelength streak fields,” Opt. Express 18, 2588725895 (2010).
9.H. Mashiko, M. J. Bell, A. R. Beck, D. M. Neumark, and S. R. Leone, “Frequency tunable attosecond apparatus,” Prog. Ultrafast Intense Laser Sci. 106, 4963 (2014).
10.S. J. Weber, B. Manschwetus, M. Billon, M. Böttcher, M. Bougeard, P. Breger, M. Géléoc, V. Gruson, A. Huetz, N. Lin, Y. J. Picard, T. Ruchon, P. Salières, and B. Carré, “Flexible attosecond beamline for high harmonic spectroscopy and XUV/near-IR pump probe experiments requiring long acquisition times,” Rev. Sci. Instrum. 86, 033108 (2015).
11.D. Guénot, D. Kroon, E. Balogh, E. W. Larsen, M. Kotur, M. Miranda, T. Fordell, P. Johnsson, J. Mauritsson, M. Gisselbrecht, K. Varjù, C. L. Arnold, T. Carette, A. S. Kheifets, E. Lindroth, A. L’Huillier, and J. M. Dahlström, “Measurements of relative photoemission time delays in noble gas atoms,” J. Phys. B: At., Mol. Opt. Phys. 47, 245602 (2014).
12.D. Kroon, D. Guénot, M. Kotur, E. Balogh, E. W. Larsen, C. M. Heyl, M. Miranda, M. Gisselbrecht, J. Mauritsson, P. Johnsson, K. Varjú, A. L’Huillier, and C. L. Arnold, “Attosecond pulse walk-off in high-order harmonic generation,” Opt. Lett. 39, 22182221 (2014).
13.G. Gademann, F. Kelkensberg, W. K. Siu, P. Johnsson, M. B. Gaarde, K. J. Schafer, and M. J. J. Vrakking, “Attosecond control of electron-ion recollision in high harmonic generation,” New J. Phys. 13, 033002 (2011).
14.G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443446 (2006).
15.M. Chini, H. Mashiko, H. Wang, S. Chen, C. Yun, S. Scott, S. Gilbertson, and Z. Chang, “Delay control in attosecond pump-probe experiments,” Opt. Express 17, 2145921464 (2009).
16.R. Locher, M. Lucchini, J. Herrmann, M. Sabbar, M. Weger, A. Ludwig, L. Castiglioni, M. Greif, M. Hengsberger, L. Gallmann, and U. Keller, “Versatile attosecond beamline in a two-foci configuration for simultaneous time-resolved measurements,” Rev. Sci. Instrum. 85, 013113 (2014).
17.M. Fiess, M. Schultze, E. Goulielmakis, B. Dennhardt, J. Gagnon, M. Hofstetter, R. Kienberger, and F. Krausz, “Versatile apparatus for attosecond metrology and spectroscopy,” Rev. Sci. Instrum. 81, 093103 (2010).
18.A. McPherson, G. Gibson, H. Jara, U. Johann, and T. S. Luk, “Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases,” J. Opt. Soc. Am. B: Opt. Phys. 4, 595601 (1987).
19.M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B 21, L31L35 (1988).
20.J. R. Sutherland, E. I. Christensen, N. D. Powers, S. E. Rhynard, J. C. Painter, and J. Peatross, “High harmonic generation in a semi-infinite gas cell,” Opt. Express 12, 4430 (2004).
21.J.-P. Brichta, M. C. H. Wong, J. B. Bertrand, H.-C. Bandulet, D. M. Rayner, and V. R. Bhardwaj, “Comparison and real-time monitoring of high-order harmonic generation in different sources,” Phys. Rev. A 79, 33404 (2009).
22.A. F. von Conta, M. Huppert, and H. J. Wörner, “A table-top monochromator for tunable high-harmonic femtosecond XUV pulses” (to be published).
23.H.-J. Hagemann, W. Gudat, and C. Kunz, “Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” J. Opt. Soc. Am. 65, 742 (1975).
24.B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: Photoabsorption, scattering, transmission and reflection at e = 50-30 000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54, 181345 (1993).
25.M. Fushitani, A. Matsuda, and A. Hishikawa, “Time-resolved EUV photoelectron spectroscopy of dissociating I2 by laser harmonics at 80 nm,” Opt. Express 19, 96009606 (2011).
26.W. R. Hunter, D. W. Angel, and R. Tousey, “Thin films and their uses for the extreme ultraviolet,” Appl. Opt. 4, 891 (1965).
27.F. R. Powell, P. W. Vedder, J. F. Lindblom, and S. F. Powell, “Thin film filter performance for extreme ultraviolet and x-ray applications,” Opt. Eng. 29, 614624 (1990).
28.R. López-Martens, K. Varjú, P. Johnsson, J. Mauritsson, Y. Mairesse, P. Salières, M. B. Gaarde, K. J. Schafer, A. Persson, S. Svanberg, C.-G. Wahlström, and A. L’Huillier, “Amplitude and phase control of attosecond light pulses,” Phys. Rev. Lett. 94(3), 033001 (2005).
29.I. Jordan, M. Huppert, M. A. Brown, J. A. van Bokhoven, and H. J. Wörner, “Photoelectron spectrometer for attosecond spectroscopy of liquids and gases,” Rev. Sci. Instrum. (to be published).
30.J. Mauritsson, M. B. Gaarde, and K. J. Schafer, “Accessing properties of electron wave packets generated by attosecond pulse trains through time-dependent calculations,” Phys. Rev. A 72, 013401 (2005).

Data & Media loading...


Article metrics loading...



We describe a versatile and compact beamline for attosecond spectroscopy. The setup consists of a high-order harmonic source followed by a delay line that spatially separates and then recombines the extreme-ultraviolet (XUV) and residual infrared (IR) pulses. The beamline introduces a controlled and actively stabilized delay between the XUV and IR pulses on the attosecond time scale. A new active-stabilization scheme combining a helium-neon-laser and a white-light interferometer minimizes fluctuations and allows to control delays accurately (26 as rms during 1.5 h) over long time scales. The high-order-harmonic-generation region is imaged via optical systems, independently for XUV and IR, into an interaction volume to perform pump-probe experiments. As a consequence of the spatial separation, the pulses can be independently manipulated in intensity, polarization, and frequency content. The beamline can be combined with a variety of detectors for measuring attosecond dynamics in gases, liquids, and solids.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd