Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. R. Verkouteren, J. Forensic Sci. 52(2), 335 (2007). 1556-4029.2006.00354.x
2.S. Hallowell, Talanta 54(3), 447 (2001).
3.J. R. Verkouteren, J. L. Coleman, R. A. Fletcher, W. J. Smith, G. A. Klouda, and G. Gillen, Meas. Sci. Technol. 19(11), 115101 (2008).
4.R. Ewing, D. Atkinson, G. Eiceman, and G. Ewing, Talanta 54, 515529 (2001).
5.R. A. Fletcher, J. A. Brazin, M. E. Staymates, B. A. Benner, Jr., and G. Gillen, Talanta 76(4), 949955 (2008).
6.M. E. Staymates, R. A. Fletcher, J. L. Staymates, G. Gillen, and C. Berkland, J. Microencapsulation 27(5), 426 (2010).
7.W. D. Wu, K. Patel, S. Rogers, and X. D. Chen, Drying Technol. 25(10), 1907 (2007).
8.G. Wang, H. Wang, Y. Cui, and J. Bai, J. Mater. Sci.: Mater. Electron. 25(1), 487 (2014).
9.S. Spath and S. Hermann, Int. J. Adv. Manuf. Technol. 70, 135144 (2014).
10.C. F. Zukoski, Chem. Eng. Sci 50, 40734079 (1995).
11.J. Weiss, P. Takhistov, and D. J. McClements, J. Food Sci. 71(9), R107 (2006).
12.M. S. Hegde, D. Larcher, L. Dupont, B. Beaudoin, K. Tekaia-Elhsissen, and J. M. Tarascon, Solid State Ionics 93(1), 33 (1996).
13.W. M. Sigmund, N. S. Bell, and L. Bergstrom, J. Am. Ceram. Soc. 83(7), 1557 (2000).
14.R. N. Udey, A. D. Jones, and G. R. Farquar, Aerosol Sci. Technol 47, 361372 (2013).
15.G. M. Dougherty, D. R. Hadley, P. R. O’Connor, and J. R. Bottiger, LLNL Report NO. UCRL-TR-230829, May 9,2007.
16.R. Berglund and R. B. Liu, Environ. Sci. Technol. 7, 147153 (1973).
17.J. R. Bottiger, P. J. Deluca, E. W. Stuebing, and D. R. Vanreenen, J. Aerosol. Sci. 29(Suppl. 1), 59655966 (1998).
18.J. B. Wedding, Environ. Sci. Technol. 9(7), 673674 (1975).
19.K. Patel and X. Chen, Asia-Pac. J. Chem. Eng. 2, 415430 (2007).
20.R. M. Verkouteren and J. R. Verkouteren, Anal. Chem. 81, 85778584 (2009).
21.R. M. Verkouteren and J. R. Verkouteren, Langmuir 27, 96449653 (2011).
22.E. Windsor, M. Najarro, A. Bloom, B. Benner, Jr., R. Fletcher, R. Lareau, and G. Gillen, Anal. Chem. 82, 85198524 (2010).
23.J. R. Andrews and M. P. O’Horo, Proc. SPIE 2413, 176 (1995).
24.M. E. Staymates, W. J. Smith, and G. Gillen, in Proceedings of the 2009 IEEE Conference on Technologies for Homeland Security, Boston, MA, 2009.
25.K. Anders, N. Roth, and A. Frohn, Part. Part. Syst. Charact. 9, 4043 (1992).
26.R. Vehring, W. R. Foss, and D. Lechuga-Ballesteros, J. Aerosol Sci. 38, 728746 (2007).
27.Y. F. Liu, M. H. Tsai, Y. F. Pai, and W. S. Hwang, Appl. Phys. A 111(2), 509 (2013).
28.M. E. Staymates, J. Grandner, G. Gillen, and S. Lukow, in 2011 IEEE International Conference on technologies for Homeland security, Boston, MA, 2011.
29.M. E. Staymates, J. Bottiger, D. Schepers, and J. L. Staymates, Aerosol Sci. Technol. 47, 945954 (2013).

Data & Media loading...


Article metrics loading...



We have developed a method to produce discrete microparticles from compounds dissolved in nonpolar or polar solvents using drop-on-demand inkjet printer technology. A piezoelectric inkjet printhead located atop a drying tube produces precise droplets containing defined quantities of analyte. Droplets solidify into microparticles with known composition and size as they traverse down the drying tube. Because this is a drop-on-demand printing process, a known number of droplets are produced providing quantitative particle delivery to a variety of substrates. Particular emphasis is placed on the development and characterization of the drying tube in this work. The drying tube was modeled using computational fluid dynamics and experimentally evaluated using laser-based flow visualization techniques. A notable design feature of the drying tube is the ability to push heated air through the tube rather than the need to pull air from the exit. This provides the ability to place a known number of well-defined particles onto almost any substrate of interest, rather than having to collect particles onto a filter first and then transfer them to another surface. Several types of particles have been produced by this system, examples of which are pure particles of cyclotrimethylenetrinitramine ranging from 10 m to 30 m in diameter, and ammonium nitrate particles of 40 m diameter. The final particle size is directly related to the solute concentration of the printing solution and the size of the initial jetted droplet.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd