Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. Rogal, K. Reuter, and M. Scheffler, “CO oxidation on Pd(100) at technologically relevant pressure conditions: First-principles kinetic Monte Carlo study,” Phys. Rev. B 77, 155410 (2008).
2.B. Corain, G. Schmid, and N. Toshima, Metal Nanoclusters in Catalysis and Materials Science (Elsevier, 2011).
3.W. C. Conner, Jr. and J. L. Falconer, “Spillover in heterogeneous catalysis,” Chem. Rev. 95, 759 (1995).
4.J. Y. Park, J. R. Renzas, A. M. Contreras, and G. A. Somorjai, “The genesis and importance of oxide–metal interface controlled heterogeneous catalysis; the catalytic nanodiode,” Top. Catal. 46, 217 (2007).
5.G. Rupprechter, “Sum frequency laser spectroscopy during chemical reactions on surfaces,” MRS Bull. 32, 1031 (2007).
6.H. Bluhm, M. Havecker, A. Knop-Gericke, M. Kiskinova, R. Schlogl, and M. Salmeron, “In situ x-ray photoelectron spectroscopy studies of gas-solid interfaces at near-ambient conditions,” MRS Bull. 32, 1022 (2007).
7.R. van Rijn, M. Ackermann, O. Balmes, T. Dufrane, A. Geluk, H. Gonzalez, H. Isern, E. de Kuyper, L. Petit, V. A. Sole, D. Wermeille, R. Felici, and J. W. M. Frenken, “Ultrahigh vacuum/high-pressure flow reactor for surface x-ray diffraction and grazing incidence small angle x-ray scattering studies close to conditions for industrial catalysis,” Rev. Sci. Instrum. 81, 014101 (2010).
8.J. F. Creemer, S. Helveg, G. H. Hoveling, S. Ullmann, A. M. Molenbroek, P. M. Sarro, and H. W. Zandbergen, “Atomic-scale electron microscopy at ambient pressure,” Ultramicroscopy 108, 993 (2008).
9.J. F. Creemer, F. Santagata, B. Morana, L. Mele, T. Alan, E. Iervolino, G. Pandraud, and P. M. Sarro, “An all-in-one nanoreactor for high-resolution microscopy on nanomaterials at high pressures,” in Proceedings of the IEEE 24th International Conference on Micro Electro Mechanical Systems (IEEE, 2011), p. 1103.
10.B. J. McIntyre, M. Salmeron, and G. A. Somorjai, “A scanning tunneling microscope that operates at high pressures and high temperatures (430 K) and during catalytic reactions,” Catal. Lett. 14, 263 (1992).
11.C. T. Herbschleb, P. C. van der Tuijn, S. B. Roobol, V. Navarro, J. W. Bakker, Q. Liu, D. Stoltz, M. E. Cañas-Ventura, G. Verdoes, M. A. van Spronsen, M. Bergman, L. Crama, I. Taminiau, A. Ofitserov, G. J. C. van Baarle, and J. W. M. Frenken, “The ReactorSTM: Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions,” Rev. Sci. Instrum. 85, 083703 (2014).
12.M. A. van Spronsen, G. J. C. van Baarle, C. T. Herbschleb, J. W. M. Frenken, and I. M. N. Groot, “High-pressure operando STM studies giving insight in CO oxidation and NO reduction over Pt(110),” Catal. Today 244, 85 (2015).
13.D. D’Agostino, D. Jay, and H. McNally, “Development and testing of hyperbaric atomic force microscopy (AFM) for biological applications,” Microsc. Microanal. 16, 1042 (2010).
14.J. Lievonen, K. Ranttila, and M. Ahlskog, “Environmental chamber for an atomic force microscope,” Rev. Sci. Instrum. 78, 043703 (2007).
15.S. R. Higgins, C. M. Eggleston, K. G. Knauss, and C. O. Boro, “A hydrothermal atomic force microscope for imaging in aqueous solution up to 150 °C,” Rev. Sci. Instrum. 69, 2994 (1998).
16.A. S. Lea, S. R. Higgins, K. G. Knauss, and K. M. Rosso, “A high-pressure atomic force microscope for imaging in supercritical carbon dioxide,” Rev. Sci. Instrum. 82, 043709 (2011).
17.F. J. Giessibl, S. Hembacher, and H. Bielefeldt, “Subatomic features on the silicon (111) − (7 × 7) surface observed by atomic force microscopy,” Science 289, 422 (2000).
18.L. Gross, F. Mohn, N. Moll, P. Liljeroth, and G. Meyer, “The chemical structure of a molecule resolved by atomic force microscopy,” Science 325, 1110 (2009).
19.F. J. Giessibl, “High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork,” Appl. Phys. Lett. 73, 3956 (1998).
20.EBL #2 piezoceramic tube, EBL Products,
21.Z. Xue, M. J. Strouse, D. K. Shuh, C. B. Knobler, H. D. Kaesz, R. F. Hicks, and R. S. Williams, “Characterization of (methylcyclopentadienyl)trimethylplatinum and low-temperature organometallic chemical vapor deposition of platinum metal,” J. Am. Chem. Soc. 111, 8779 (1989).
22.Macor Machinable Glass Ceramic, Corning Inc.,
23.A. Botman, M. Hesselberth, and J. J. L. Mulders, “Improving the conductivity of platinum-containing nano-structures created by electron-beam-induced deposition,” Microelectron. Eng. 85, 1139 (2008).
24.F. J. Giessibl, “Advances in atomic force microscopy,” Rev. Mod. Phys. 75, 949 (2003).
25.R. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, and A. S. Morse, “Fundamental limits to force detection using quartz tuning forks,” Rev. Sci. Instrum. 71, 2776 (2000).
26.M. J. Rost, L. Crama, P. Schakel, E. van Tol, G. van Velzen-Williams, C. F. Overgauw, H. Ter Horst, H. Dekker, B. Okhuijsen, and M. Seynen, “Scanning probe microscopes go video rate and beyond,” Rev. Sci. Instrum. 76, 053710 (2005).
27.M. E. Messing, R. Westerström, B. O. Meuller, S. Blomberg, J. Gustafson, J. N. Andersen, E. Lundgren, R. van Rijn, O. Balmes, H. Bluhm, and K. Deppert, “Generation of Pd model catalyst nanoparticles by spark discharge,” J. Phys. Chem. C 114, 9257 (2010).
28.J. S. Villarrubia, “Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation,” J. Res. Natl. Inst. Stand. Technol. 102, 425 (1997).
29.E. P. Eernisse, R. W. Ward, and R. B. Wiggins, “Survey of quartz bulk resonator sensor technologies,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 323 (1988).
30.K. K. Kanazawa and J. G. Gordon II, “The oscillation frequency of a quartz resonator in contact with liquid,” Anal. Chim. Acta 175, 99 (1985).

Data & Media loading...


Article metrics loading...



An Atomic Force Microscope (AFM) has been integrated in a miniature high-pressure flow reactor for observations of heterogeneous catalytic reactions under conditions similar to those of industrial processes. The AFM can image model catalysts such as those consisting of metal nanoparticles on flat oxide supports in a gas atmosphere up to 6 bar and at a temperature up to 600 K, while the catalytic activity can be measured using mass spectrometry. The high-pressure reactor is placed inside an Ultrahigh Vacuum (UHV) system to supplement it with standard UHV sample preparation and characterization techniques. To demonstrate that this instrument successfully bridges both the and the , images have been recorded of supported palladium nanoparticles catalyzing the oxidation of carbon monoxide under high-pressure, high-temperature conditions.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd