Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/86/5/10.1063/1.4919413
1.
1.G. Gabrielse, Phys. Today 66(12), 64 (2013).
http://dx.doi.org/10.1063/PT.3.2223
2.
2.D. Hanneke, S. Fogwell, and G. Gabrielse, Phys. Rev. Lett. 100, 120801 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.120801
3.
3.T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Phys. Rev. Lett. 109, 111807 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.111807
4.
4.J. Prades, E. de Rafael, and A. Vainshtein, Hadronic Light-by-Light Scattering Contribution to the Muon Anomalous Magnetic Moment (World Scientific, Singapore, 2009), Chap. Hadronic Light-by-Light Scattering Contribution to the Muon Anomalous Magnetic Moment.
5.
5.K. Fujikawa, B. Lee, and A. Sanda, Phys. Rev. D 6, 2923 (1972).
http://dx.doi.org/10.1103/PhysRevD.6.2923
6.
6.A. Czarnecki, B. Krause, and W. J. Marciano, Phys. Rev. Lett. 76, 3267 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.3267
7.
7.M. Knecht, S. Peris, M. Perrottet, and E. D. Rafael, J. High Energy Phys. 11, 3 (2002).
http://dx.doi.org/10.1088/1126-6708/2002/11/003
8.
8.A. Czarnecki, W. J. Marciano, and A. Vainshtein, Phys. Rev. D 67, 073006 (2003).
http://dx.doi.org/10.1103/PhysRevD.67.073006
9.
9.R. Bouchendira, P. Clade, S. da Guellati-Khelifa, F. Nez, and F. Biraben, Phys. Rev. Lett. 106, 080801 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.080801
10.
10.R. S. Van Dyck, Jr., P. B. Schwinberg, and H. G. Dehmelt, Phys. Rev. Lett. 59, 26 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.26
11.
11.P. B. Schwinberg, R. S. V. Dyck, and H. G. Dehmelt, Phys. Lett. A 81, 119 (1981).
http://dx.doi.org/10.1016/0375-9601(81)90038-4
13.
13.J. Estrada, T. Roach, J. N. Tan, P. Yesley, and G. Gabrielse, Phys. Rev. Lett. 84, 859 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.859
14.
14.U.S. NRC Fact Sheet on Biological Effects of Radiation, http://www.nrc.gov/reading-rm/doc-collections/fact-sheets/bio-effects-radiation.html.
15.
15.D. Hanneke, S. Fogwell Hoogerheide, and G. Gabrielse, Phys. Rev. A 83, 073002 (2011).
http://dx.doi.org/10.1103/PhysRevA.83.052122
16.
16.G. Gabrielse, L. Haarsma, and S. L. Rolston, Int. J. Mass Spectrom. Ion Processes 88, 319 (1989);
http://dx.doi.org/10.1016/0168-1176(89)85027-X
16.G. Gabrielse, L. Haarsma, and S. L. Rolston, Int. J. Mass Spectrom. Ion Processes 93, 121 (1989).
http://dx.doi.org/10.1016/0168-1176(89)83080-0
17.
17.G. Gabrielse and F. C. MacKintosh, Int. J. Mass Spectrom. Ion Processes 57, 1 (1984).
http://dx.doi.org/10.1016/0168-1176(84)85061-2
18.
18.J. Goldman and G. Gabrielse, Phys. Rev. A 81, 052335 (2010).
http://dx.doi.org/10.1103/PhysRevA.81.052335
19.
19.With D. von Lindenfels.
20.
20.L. Haarsma, “Accumulating positrons in an ion trap,” Ph.D. thesis (Harvard University, 1994) thesis advisor: G. Gabrielse.
21.
21.L. S. Brown and G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986).
http://dx.doi.org/10.1103/RevModPhys.58.233
22.
22.N. B. Bowden, “Production of cold antihydrogen during the positron cooling of antiprotons,” Ph.D. thesis (Harvard University, 2003) thesis advisor: G. Gabrielse.
23.
23.J. K. Estrada, “Cold trapped positrons and progress to cold antihydrogen,” Ph.D. thesis (Massachusetts Institute of Technology, 2002) thesis advisor: G. Gabrielse.
http://aip.metastore.ingenta.com/content/aip/journal/rsi/86/5/10.1063/1.4919413
Loading
/content/aip/journal/rsi/86/5/10.1063/1.4919413
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/86/5/10.1063/1.4919413
2015-05-05
2016-12-03

Abstract

Positrons are accumulated within a Penning trap designed to make more precise measurements of the positron and electron magnetic moments. The retractable radioactive source used is weak enough to require no license for handling radioactive material, and the radiation dosage 1 m from the source gives an exposure several times smaller than the average radiation dose on the earth’s surface. The 100 mK trap is mechanically aligned with the 4.2 K superconducting solenoid that produces a 6 T magnetic trapping field with a direct mechanical coupling.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/86/5/1.4919413.html;jsessionid=R159eRE9_Aa6HbzeLpUELmMp.x-aip-live-06?itemId=/content/aip/journal/rsi/86/5/10.1063/1.4919413&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/86/5/10.1063/1.4919413&pageURL=http://scitation.aip.org/content/aip/journal/rsi/86/5/10.1063/1.4919413'
Right1,Right2,Right3,