Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.P. R. Saulson, “Thermal noise in mechanical experiments,” Phys. Rev. D 42, 24372445 (1990).
2.T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-MHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687692 (2012).
3.T. H. Stievater, W. S. Rabinovich, N. A. Papanicolaou, R. Bass, and J. B. Boos, “Measured limits of detection based on thermal-mechanical frequency noise in micromechanical sensors,” Appl. Phys. Lett. 90(5), 051114 (2007).
4.H. B. Callen and T. A. Welton, “Irreversibility and generalized noise,” Phys. Rev. 83, 3440 (1951).
5.P. Amico, L. Bosi, L. Carbone, L. Gammaitoni, F. Marchesoni, M. Punturo, F. Travasso, and H. Vocca, “Mechanical quality factor of large mirror substrates for gravitational waves detectors,” Rev. Sci. Instrum. 73(1), 179 (2002).
6.T. Uchiyama, T. Tomaru, M. E. Tobar, D. Tatsumi, S. Miyoki, M. Ohashi, K. Kuroda, T. Suzuki, N. Sato, T. Haruyama, A. Yamamoto, and T. Shintomi, “Mechanical quality factor of a cryogenic sapphire test mass for gravitational wave detectors,” Phys. Lett. A 261(12), 511 (1999).
7.S. Nietzsche, R. Nawrodt, A. Zimmer, R. Schnabel, W. Vodel, and P. Seidel, “Cryogenic q-factor measurement of optical substrates for optimization of gravitational wave detectors,” Supercond. Sci. Technol. 19(5), S293 (2006).
8.R. Nawrodt, A. Zimmer, T. Koettig, C. Schwarz, D. Heinert, M. Hudl, R. Neubert, M. Thürk, S. Nietzsche, W. Vodel, P. Seidel, and A. Tünnermann, “High mechanical Q-factor measurements on silicon bulk samples,” J. Phys.: Conf. Ser. 122(1), 012008 (2008).
9.G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, “Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings,” Classical Quantum Gravity 19(5), 897 (2002).
10.S. D. Penn, P. H. Sneddon, H. Armandula, J. C. Betzwieser, G. Cagnoli, J. Camp, D. R. M. Crooks, M. M. Fejer, A. M. Gretarsson, G. M. Harry, J. Hough, S. E. Kittelberger, M. J. Mortonson, R. Route, S. Rowan, and C. C. Vassiliou, “Mechanical loss in tantala/silica dielectric mirror coatings,” Classical Quantum Gravity 20(13), 2917 (2003).
11.A. Borrielli, M. Bonaldi, E. Serra, A. Bagolini, and L. Conti, “Wideband mechanical response of a high-q silicon double-paddle oscillator,” J. Micromech. Microeng. 21(6), 065019 (2011).
12.M. Goryachev, D. L. Creedon, E. N. Ivanov, S. Galliou, R. Bourquin, and M. E. Tobar, “Extremely low-loss acoustic phonons in a quartz bulk acoustic wave resonator at millikelvin temperature,” Appl. Phys. Lett. 100(24), 243504 (2012).
13.Y. Chen, “Macroscopic quantum mechanics: Theory and experimental concepts of optomechanics,” J. Phys. B: At., Mol. Opt. Phys. 46(10), 104001 (2013).
14.M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity Optomechanics , e-print arXiv:1303.0733.
15.L. A. De Lorenzo and K. C. Schwab, “Superfluid optomechanics: Coupling of a superfluid to a superconducting condensate,” New J. Phys. 16(11), 113020 (2014).
16.R. N. Kleiman, G. K. Kaminsky, J. D. Reppy, R. Pindak, and D. J. Bishop, “Single-crystal silicon high-q torsional oscillators,” Rev. Sci. Instrum. 56(11), 2088 (1985).
17.T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, “Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity,” J. Appl. Phys. 69(2), 668 (1991).
18.T. J. Moir, “Analysis of an amplitude-locked loop,” Electron. Lett. 31(9), 694695 (1995).
19.K. Tokmakov, V. Mitrofanov, V. Braginsky, S. Rowan, and J. Hough, “Bi-filar pendulum mode Q factor for silicate bonded pendulum,” AIP Conf. Proc. 523(1), 445446 (2000).
20.R. Nawrodt, C. Schwarz, S. Kroker, I. W. Martin, R. Bassiri, F. Brückner, L. Cunningham, G. D. Hammond, D. Heinert, J. Hough, T. Käsebier, E.-B Kley, R. Neubert, S. Reid, S. Rowan, P. Seidel, and A. Tünnermann, “Investigation of mechanical losses of thin silicon flexures at low temperatures,” Classical Quantum Gravity 30(11), 115008 (2013).
21.Y. L. Huang and P. R. Saulson, “Dissipation mechanisms in pendulums and their implications for gravitational wave interferometers,” Rev. Sci. Instrum. 69(2), 544 (1998).
22.C. C. Speake, T. J. Quinn, R. S. Davis, and S. J. Richman, “Experiment and theory in anelasticity,” Meas. Sci. Technol. 10(6), 430 (1999).

Data & Media loading...


Article metrics loading...



Thermal noise is a limit to precision measurement in many fields. The relationship of the quality factor of mechanical systems to the thermal noise has compelled many researchers to search for materials with low mechanical losses. Typical measurements of mechanical quality factor involve exciting a mechanical resonator and observing the exponential decay of the amplitude under free oscillations. Estimation of the decay time allows one to infer the quality factor. In this article, we describe an alternative technique in which the resonator is forced to oscillate at constant amplitude, and the quality factor is estimated by measuring the drive amplitude required to maintain constant oscillation amplitude. A straightforward method for calibration of the quality factor is presented, along with an analysis of the propagation of measurement uncertainties. Such a technique allows the quality factor to be measured continuously in real time and at constant signal to noise ratio.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd