Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.G. Gloeckler and J. Geiss, “Interstellar and inner source pickup ions observed with SWICS ULYSSES,” Space Sci. Rev. 86, 127159 (1998).
2.J. Geiss and G. Gloeckler, “Isotopic composition of H, He, and Ne in the protosolar cloud,” Space Sci. Rev. 106, 318 (2003).
3.S. M. Krimigis, D. G. Mitchell, D. C. Hamilton, S. Livi, J. Dandouras, S. Jaskulek, T. P. Armstrong, J. D. Boldt, A. F. Cheng, G. Gloeckler, J. R. Hayes, K. C. Hsieh, W.-H. Ip, E. P. Keath, E. Kirsch, N. Krupp, L. J. Lanzerotti, R. Lundgren, B. H. Mauk, R. W. McEntire, E. C. Roelof, C. E. Schlemm, B. E. Tossman, B. Wilken, and D. J. Williams, “Magnetosphere imaging instrument (MIMI) on the Cassini mission to Saturn/Titan,” Space Sci. Rev. 114, 233329 (2004).
4.J. R. L. McNutt, S. A. Livi, R. S. Gurnee, M. E. Hill, K. A. Cooper, G. B. Andrews, E. P. Keath, S. M. Krimigis, D. G. Mitchell, B. Tossman, F. Bagenal, J. D. Boldt, W. Bradley, W. S. Devereux, G. C. Ho, S. E. Jaskulek, T. W. Lefevere, H. Malcom, G. A. Marcus, J. R. Hayes, G. T. Moore, B. D. Williams, P. Wilson IV, L. E. Brown, M. Kusterer, and J. Vandegriff, “The Pluto energetic particle spectrometer science investigation (PEPSSI) on the New Horizons mission,” Space Sci. Rev. 140, 315385 (2007).
5.D. McComas, F. Allegrini, F. Bagenal, P. Casey, P. Delamere, D. Demkee, G. Dunn, H. Elliott, J. Hanley, K. Johnson, J. Langle, G. Miller, S. Pope, M. Reno, B. Rodriguez, N. Schwadron, P. Valek, and S. Weidner, “The solar wind around Pluto (SWAP) instrument aboard New Horizons,” Space Sci. Rev. 140, 261313 (2008).
6.D. J. McComas, N. Alexander, F. Allegrini, F. Bagenal, C. Beebe, G. Clark, F. Crary, M. I. Desai, A. De Los Santos, D. Demkee, J. Dickinson, D. Everett, T. Finley, A. Gribanova, R. Hill, J. Johnson, C. Kofoed, C. Loeffler, P. Louarn, M. Maple, W. Mills, C. Pollock, M. Reno, B. Rodriguez, J. Rouzaud, D. Santos-Costa, P. Valek, S. Weidner, P. Wilson, R. J. Wilson, and D. White, “The Jovian Auroral distributions experiment (JADE) on the Juno mission to Jupiter,” Space Sci. Rev. (published online).
7.J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM-the stopping and range of ions in matter,” Nucl. Instrum. Methods Phys. Res., Sect. B 268(1), 18181823 (2010).
8.D. A. Dahl, “SIMION for the personal computer in reflection,” Int. J. Mass Spectrom. 200, 325 (2000).
9.D. J. McComas, F. Allegrini, C. J. Pollock, H. O. Funsten, S. Ritzau, and G. Gloeckler, “Ultrathin (∼10 nm) carbon foils in space instruments,” Rev. Sci. Instrum. 75, 48634870 (2004).
10.H. O. Funsten, D. J. McComas, and B. L. Barraclough, “Ultrathin foils used for low-energy neutral atom imaging of the terrestrial magnetosphere,” Opt. Eng. 32(12), 30903095 (1993).
11.R. W. Ebert, F. Allegrini, S. A. Fuselier, G. Nicolaou, P. Bedworth, S. Sinton, and K. J. Trattner, “Angular scattering of 1-50 keV ions through graphene and thin carbon foils: Potential applications for space plasma instrumentation,” Rev. Sci. Instrum. 85(3), 033302 (2014).
12.F. Allegrini, D. J. McComas, D. T. Young, J. J. Berthelier, J. Covinhes, J. M. Illiano, J.-F. Riou, H. O. Funsten, and R. W. Harper, “Energy loss of 1-50 keV H, He, C, N, O, Ne, and Ar ions transmitted through thin carbon foils,” Rev. Sci. Instrum. 77(4), 4501 (2006).
13.W. R. Paterson, L. A. Frank, and K. L. Ackerson, “Galileo plasma observations at Europa: Ion energy spectra and moments,” J. Geophys. Res. 104, 2277922792, doi:10.1029/1999JA900191 (1999).
14.P. A. Delamere, F. Bagenal, and A. Steffl, “Radial variations in the Io plasma torus during the Cassini era,” J. Geophys. Res.: Space Phys. 110(A12), 223, doi:10.1029/2005JA011251 (2005).
15.F. Bagenal and P. A. Delamere, “Flow of mass and energy in the magnetospheres of Jupiter and Saturn,” J. Geophys. Res. 116(A05), 209, doi:10.1029/2010JA016294 (2011).
16.C. Paranicas, J. F. Cooper, H. B. Garrett, R. E. Johnson, and S. J. Sturner, “Europa’s Radiation Environment and Its Effects on the Surface,” in Europa, The University of Arizona space science series, edited byR. T. Pappalardo, W. B. McKinnon, K. K. Khurana, and R. Dotson (University of Arizona Press, Tucson, 2009), pp. 529544.
17.C. Paranicas, R. W. McEntire, A. F. Cheng, A. Lagg, and D. J. Williams, “Energetic charged particles near Europa,” J. Geophys. Res. 105, 1600516016, doi:10.1029/1999JA000350 (2000).
18.K. Ogasawara, F. Allegrini, M. I. Desai, S. Livi, and D. J. McComas, “A linear mode avalanche photodiode for ion detection in the energy range 5-250 keV,” IEEE Trans. Nucl. Sci. 59, 2601 (2012).
19.K. Ogasawara, S. A. Livi, E. Grotheer, and D. J. McComas, “Thin dead-layer avalanche photodiodes enable low-energy ion measurements,” Nucl. Instrum. Methods Phys. Res., Sect. A 614, 271277 (2010).
20.K. Ogasawara, S. Livi, and D. J. McComas, “Temperature dependence of the thin dead layer avalanche photodiode for low energy electron measurements,” Nucl. Instrum. Methods Phys. Res., Sect. A 611, 9398 (2009).
21.K. Ogasawara, T. Takashima, K. Asamura, Y. Saito, and T. Mukai, “The effect of depletion layer thickness in avalanche photodiodes for measurement of low-energy electrons,” Nucl. Instrum. Methods Phys. Res., Sect. A 566, 575583 (2006).
22.K. Ogasawara, S. Livi, M. A. Dayeh, F. Allegrini, M. I. Desai, and D. J. McComas, “Avalanche photodiode arrays enable large-area measurements of medium-energy electrons,” IEEE Trans. Nucl. Sci. 56, 25332537 (2009).
23.K. Ogasawara, K. Asamura, T. Mukai, and Y. Saito, “Avalanche photodiode for measurement of low-energy electrons,” Nucl. Instrum. Methods Phys. Res., Sect. A 545, 744752 (2005).
24.K. Ogasawara, M. Hirahara, W. Miyake, S. Kasahara, T. Takashima, K. Asamura, Y. Saito, and T. Mukai, “High-resolution detection of 100 keV electrons using avalanche photodiodes,” Nucl. Instrum. Methods Phys. Res., Sect. A 594, 5055 (2008).
25.D. J. McComas, F. Allegrini, J. Baldonado, B. Blake, P. C. Brandt, J. Burch, J. Clemmons, W. Crain, D. Delapp, R. DeMajistre, D. Everett, H. Fahr, L. Friesen, H. Funsten, J. Goldstein, M. Gruntman, R. Harbaugh, R. Harper, H. Henkel, C. Holmlund, G. Lay, D. Mabry, D. Mitchell, U. Nass, C. Pollock, S. Pope, M. Reno, S. Ritzau, E. Roelof, E. Scime, M. Sivjee, R. Skoug, T. S. Sotirelis, M. Thomsen, C. Urdiales, P. Valek, K. Viherkanto, S. Weidner, T. Ylikorpi, M. Young, and J. Zoennchen, “The two wide-angle imaging neutral-atom spectrometers (TWINS) NASA mission-of-opportunity,” Space Sci. Rev. 142, 157231 (2009).
26.H. Seiler, “Secondary electron emission in the scanning electron microscope,” J. Appl. Phys. 54, R1 (1983).
27.G. Gloeckler, J. Geiss, H. Balsiger, P. Bedini, J. C. Cain, J. Fisher, L. A. Fisk, A. B. Galvin, F. Gliem, and D. C. Hamilton, “The solar wind ion composition spectrometer,” Astron. Astrophys., Suppl. Ser. 92, 267289 (1992).
28.F. Allegrini, R. W. Ebert, S. A. Fuselier, G. Nicolaou, P. Bedworth, S. Sinton, and K. J. Trattner, “Charge state of ∼1 to 50 keV ions after passing through graphene and ultrathin carbon foils,” Opt. Eng. 53(2), 024101 (2014).
29.Q. Yang, D. J. O’Connor, and Z. Wang, “Empirical formulae for energy loss straggling of ions in matter,” Nucl. Instrum. Methods Phys. Res., Sect. A 61, 149155 (1991).
30.B. H. Mauk, D. K. Haggerty, S. E. Jaskulek, C. E. Schlemm, L. E. Brown, S. A. Cooper, R. S. Gurnee, C. M. Hammock, J. R. Hayes, G. C. Ho, J. C. Hutcheson, A. D. Jacques, S. Kerem, C. K. Kim, D. G. Mitchell, K. S. Nelson, C. P. Paranicas, N. Paschalidis, E. Rossano, and M. R. Stokes, “The Jupiter energetic particle detector instrument (JEDI) investigation for the Juno mission,” Space Sci. Rev. (published online).
31.A. B. Galvin, L. M. Kistler, M. A. Popecki, C. J. Farrugia, K. D. C. Simunac, L. Ellis, E. Möbius, M. A. Lee, M. Boehm, J. Carroll, A. Crawshaw, M. Conti, P. Demaine, S. Ellis, J. A. Gaidos, J. Googins, M. Granoff, A. Gustafson, D. Heirtzler, B. King, U. Knauss, J. Levasseur, S. Longworth, K. Singer, S. Turco, P. Vachon, M. Vosbury, M. Widholm, L. M. Blush, R. Karrer, P. Bochsler, H. Daoudi, A. Etter, J. Fischer, J. Jost, A. Opitz, M. Sigrist, P. Wurz, B. Klecker, M. Ertl, E. Seidenschwang, R. F. Wimmer-Schweingruber, M. Koeten, B. Thompson, and D. Steinfeld, “The plasma and suprathermal ion composition (PLASTIC) investigation on the STEREO observatories,” Space Sci. Rev. 136, 437486 (2008).
32.G. M. Mason, A. Korth, P. H. Walpole, M. I. Desai, T. T. von Rosenvinge, and S. A. Shuman, “The suprathermal ion telescope (SIT) for the IMPACT/SEP investigation,” Space Sci. Rev. 136, 257284 (2008).

Data & Media loading...


Article metrics loading...



We have developed a novel concept for a Compact Dual Ion Composition Experiment (CoDICE) that simultaneously provides high quality plasma and energetic ion composition measurements over 6 decades in ion energy in a wide variety of space plasma environments. CoDICE measures the two critical ion populations in space plasmas: (1) mass and ionic charge state composition and 3D velocity and angular distributions of ∼10 eV/q–40 keV/q plasma ions—CoDICE-Lo and (2) mass composition, energy spectra, and angular distributions of ∼30 keV–10 MeV energetic ions—CoDICE-Hi. CoDICE uses a common, integrated Time-of-Flight (TOF) versus residual energy (E) subsystem for measuring the two distinct ion populations. This paper describes the CoDICE design concept, and presents results of the laboratory tests of the TOF portion of the TOF vs. E subsystem, focusing specifically on (1) investigation of spill-over and contamination rates on the start and stop microchannel plate (MCP) anodes vs. secondary electron steering and focusing voltages, scanned around their corresponding model-optimized values, (2) TOF measurements and resolution and angular resolution, and (3) cross-contamination of the start and stop MCPs’ singles rates from CoDICE-Lo and -Hi, and (4) energy resolution of avalanche photodiodes near the lower end of the CoDICE-Lo energy range. We also discuss physical effects that could impact the performance of the TOF vs. E subsystem in a flight instrument. Finally, we discuss advantages of the CoDICE design concept by comparing with capabilities and resources of existing flight instruments.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd