Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/86/6/10.1063/1.4922664
1.
1.J. Wrachtrup, C. von Borczyskowski, J. Bernard, M. Orritt, and R. Brown, Nature 363, 244 (1993).
http://dx.doi.org/10.1038/363244a0
2.
2.J. Wrachtrup, C. von Borczyskowski, J. Bernard, M. Orrit, and R. Brown, Phys. Rev. Lett. 71, 3565 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.3565
3.
3.F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, Phys. Rev. Lett. 93, 130501 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.130501
4.
4.J. R. Weber, W. F. Koehl, J. B. Varley, A. Janotti, B. B. Buckley, C. G. V. d. Walle, and D. D. Awschalom, Appl. Phys. Lett. 109, 102417 (2011).
http://dx.doi.org/10.1063/1.3578264
5.
5.J. J. Pla, K. Y. Tan, J. P. Dehollain, W. H. Lim, J. J. L. Morton, F. A. Zwanenburg, D. N. Jamieson, A. S. Dzurak, and A. Morello, Nature 496, 334 (2013).
http://dx.doi.org/10.1038/nature12011
6.
6.P. Siyushev, K. Xia, R. Reuter, M. Jamali, N. Zhao, N. Yang, C. Duan, N. Kukharchyk, A. D. Wieck, R. Kolesov, and J. Wrachtrup, Nat. Commun. 5, 3895 (2014).
http://dx.doi.org/10.1038/ncomms4895
7.
7.D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, Nano Lett. 10, 3168 (2010).
http://dx.doi.org/10.1021/nl102066q
8.
8.A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Mottonen, C. D. Nugroho, C. Yang, J. A. van Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott, L. C. L. Hollenberg, R. G. Clark, and A. S. Dzurak, Nature 467, 687 (2010).
http://dx.doi.org/10.1038/nature09392
9.
9.R. Kolesov, K. Xia, R. Reuter, M. Jamali, R. Stöhr, T. Inal, P. Siyushev, and J. Wrachtrup, Phys. Rev. Lett. 111, 120502 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.120502
10.
10.R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and J. Wrachtrup, Nat. Commun. 3, 1029 (2012).
http://dx.doi.org/10.1038/ncomms2034
11.
11.C. Yin, M. Rancic, G. G. de Boo, N. Stavrias, J. C. McCallum, M. J. Sellars, and S. Rogge, Nature 497, 91 (2013).
http://dx.doi.org/10.1038/nature12081
12.
12.G. Waldherr, Y. Wang, S. Zaiser, M. Jamali, T. Schulte-Herbrüggen, H. Abe, T. Ohshima, J. Isoya, J. F. Du, P. Neumann, and J. Wrachtrup, Nature 506, 204 (2014).
http://dx.doi.org/10.1038/nature12919
13.
13.F. Dolde, V. Bergholm, Y. Wang, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, F. Jelezko, P. Neumann, T. Schulte-Herbrüggen, J. Biamonte, and J. Wrachtrup, Nat. Commun. 5, 3371 (2014).
http://dx.doi.org/10.1038/ncomms4371
14.
14.E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, Nature 466, 730 (2010).
http://dx.doi.org/10.1038/nature09256
15.
15.H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, Nature 497, 86 (2013).
http://dx.doi.org/10.1038/nature12016
16.
16.D. R. McCamey, J. V. Tol, G. W. Morley, and C. Boehme, Science 330, 1652 (2010).
http://dx.doi.org/10.1126/science.1197931
17.
17.G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, Nature 455, 648 (2008).
http://dx.doi.org/10.1038/nature07278
18.
18.J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, Nature 455, 644 (2008).
http://dx.doi.org/10.1038/nature07279
19.
19.T. Häberle, D. Schmid-Lorch, F. Reinhard, and J. Wrachtrup, Nat. Nanotechnol. 10, 125 (2015).
http://dx.doi.org/10.1038/nnano.2014.299
20.
20.H. J. Mamin, M. Kim, M. H. Sherwood, C. T. Rettner, K. Ohno, D. D. Awschalom, and D. Rugar, Science 339, 557 (2013).
http://dx.doi.org/10.1126/science.1231540
21.
21.S. J. DeVience, L. M. Pham, I. Lovchinsky, A. O. Sushkov, N. Bar-Gill, C. Belthangady, F. Casola, M. Corbett, H. Zhang, M. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, Nat. Nanotechnol. 10, 129 (2015).
http://dx.doi.org/10.1038/nnano.2014.313
22.
22.T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, C. A. Meriles, F. Reinhard, and J. Wrachtrup, Science 339, 561 (2013).
http://dx.doi.org/10.1126/science.1231675
23.
23.B. Grotz, J. Beck, P. Neumann, B. Naydenov, R. Reuter, F. Reinhard, F. Jelezko, J. Wrachtrup, D. Schweinfurth, B. Sarkar, and P. Hemmer, New J. Phys. 13, 055004 (2011).
http://dx.doi.org/10.1088/1367-2630/13/5/055004
24.
24.M. S. Grinolds, S. Hong, P. Maletinsky, L. Luan, M. D. Lukin, R. L. Walsworth, and A. Yacoby, Nat. Phys. 9, 215 (2013).
http://dx.doi.org/10.1038/nphys2543
25.
25.A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. vonBorczyskowski, Science 276, 2012 (1997).
http://dx.doi.org/10.1126/science.276.5321.2012
26.
26.H. Iizuka, T. Watanabe, K. Sato, and K. Nishikawa, IEICE Trans. Commun. E85-B, 1169 (2002).
27.
27.N. Mizuochi, P. Neumann, F. Rempp, J. Beck, V. Jacques, P. Siyushev, K. Nakamura, D. Twitchen, H. Watanabe, S. Yamasaki, F. Jelezko, and J. Wrachtrup, Phys. Rev. B 80, 041201 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.041201
28.
28.R. J. Epstein, F. M. Mendoza, Y. K. Kato, and D. D. Awschalom, Nat. Phys. 1, 94 (2005).
http://dx.doi.org/10.1038/nphys141
29.
29.D. Pozar, Microwave Engineering (Wiley, 2004).
30.
30.M. Steiner, P. Neumann, J. Beck, F. Jelezko, and J. Wrachtrup, Phys. Rev. B 81, 035205 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.035205
31.
31.P. Neumann, J. Beck, M. Steiner, F. Rempp, H. Fedder, P. R. Hemmer, J. Wrachtrup, and F. Jelezko, Science 329, 542 (2010).
http://dx.doi.org/10.1126/science.1189075
32.
32.V. Stepanov, F. H. Cho, C. Abeywardana, and S. Takahashi, Appl. Phys. Lett. 106, 063111 (2015).
http://dx.doi.org/10.1063/1.4908528
http://aip.metastore.ingenta.com/content/aip/journal/rsi/86/6/10.1063/1.4922664
Loading
/content/aip/journal/rsi/86/6/10.1063/1.4922664
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/86/6/10.1063/1.4922664
2015-06-22
2016-12-09

Abstract

Magnetic resonance with ensembles of electron spins is commonly performed around 10 GHz, but also at frequencies above 240 GHz and in corresponding magnetic fields of over 9 T. However, experiments with single electron and nuclear spins so far only reach into frequency ranges of several 10 GHz, where existing coplanar waveguide structures for microwave (MW) delivery are compatible with single spin readout techniques (e.g., electrical or optical readout). Here, we explore the frequency range up to 90 GHz, with magnetic fields of up to ≈3 T for single spin magnetic resonance in conjunction with optical spin readout. To this end, we develop MW resonators with optical single spin access. In our case, rectangular 60–90 GHz (E-band) waveguides guarantee low-loss supply of microwaves to the resonators. Three dimensional cavities, as well as coplanar waveguide resonators, enhance MW fields by spatial and spectral confinement with a MW efficiency of . We utilize single nitrogen vacancy (NV) centers as hosts for optically accessible spins and show that their properties regarding optical spin readout known from smaller fields (<0.65 T) are retained up to fields of 3 T. In addition, we demonstrate coherent control of single nuclear spins under these conditions. Furthermore, our results extend the applicable magnetic field range of a single spin magnetic field sensor. Regarding spin based quantum registers, high fields lead to a purer product basis of electron and nuclear spins, which promises improved spin lifetimes. For example, during continuous single-shot readout, the 14N nuclear spin shows second-long longitudinal relaxation times.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/86/6/1.4922664.html;jsessionid=z9v6xzwBa1J6ZIIigqb6YScH.x-aip-live-06?itemId=/content/aip/journal/rsi/86/6/10.1063/1.4922664&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/86/6/10.1063/1.4922664&pageURL=http://scitation.aip.org/content/aip/journal/rsi/86/6/10.1063/1.4922664'
Right1,Right2,Right3,