Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.D. M. Thomas, G. R. McKee, F. Burrell, K. H. Levinton, E. L. Foley, and R. K. Fisher, Fusion Sci. Technol. 53, 487 (2008).
2.G. R. McKee, C. Fenzi, R. J. Fonck, and M. Jakubowski, Rev. Sci. Instrum. 74, 2014 (2003).
3.K. McCormick, S. Fiedler, G. Kocsis, J. Schweinzer, and S. Zoletnik, Fusion Eng. Des. 34-35, 125 (1997).
4.S. Zoletnik, G. Petravich, A. Bencze, M. Berta, S. Fiedler, K. McCormick, and J. Schweinzer, Rev. Sci. Instrum. 76, 073504 (2005).
5.S. Zoletnik, M. Anton, M. Endler, S. Fiedler, M. Hirsch, K. McCormick, J. Schweinzer, and the W7-AS Team, Phys. Plasmas 6, 4239 (1999).
6.S. Fiedler, R. Brandenburg, J. Baldzuhn, K. McCormick, F. Aumayr, J. Schweinzer, and H. Winter, J. Nucl. Mater. 266-269, 1279 (1999).
7.D. M. Thomas, A. W. Hyatt, and M. P. Thomas, Rev. Sci. Instrum. 61, 3040 (1990).
8.A. Kojima, K. Kamiya, H. Iguchi, T. Fujita, H. Kakiuchi, and Y. Kamada, Rev. Sci. Instrum. 79, 093502 (2008).
9.D. M. Thomas, Rev. Sci. Instrum. 66, 806 (1995).
10.S. Zoletnik, L. Bardoczi, A. Kraemer-Flecken, Y. Xu, I. Shesterikov, S. Soldatov, G. Anda, D. Dunai, G. Petravich, and the TEXTOR Team, Plasma Phys. Controlled Fusion 54, 065007 (2012).
11.D. Guszejnov, A. Bencze, S. Zoletnik, and A. Kraemer-Flecken, Phys. Plasmas 20, 062303 (2013).
12.J. Schweinzer, E. Wolfrum, F. Aumayr, M. Pockl, H. Winter, R. P. Schorn, E. Hintz, and A. Unterreiter, Plasma Phys. Controlled Fusion 34, 1173 (1992).
13.R. Fischer, E. Wolfrum, J. Schweinzer, and the ASDEX Upgrade Team, Plasma Phys. Controlled Fusion 50, 085009 (2008).
14.I. Pusztai, G. Pokol, D. Dunai, D. Refy, G. Por, G. Anda, S. Zoletnik, and J. Schweinzer, Rev. Sci. Instrum. 80, 083502 (2009).
15.K. Bell, H. Gilbody, J. Hughes, A. E. Kingston, and F. Smith, J. Phys. Chem. Ref. Data 12, 891 (1983).
16.R. Janev and J. Gallagher, J. Phys. Chem. Ref. Data 13, 1199 (1984).
17.D. Guszejnov, G. I. Pokol, I. Pusztai, D. Refy, S. Zoletnik, M. Lampert, and Y. U. Nam, Rev. Sci. Instrum. 83, 113501 (2012).
18.D. Dunai, S. Zoletnik, J. Sarkozi, and A. R. Field, Rev. Sci. Instrum. 81, 103503 (2010).
19.See for Optical and Illumination Design Software.
20.P. H. Lissberger and W. L. Wilcock, J. Opt. Soc. Am. 49, 126 (1959).
21.A. R. Field, D. Dunai, R. Gaffka, Y.-c. Ghim, I. Kiss, B. Meszaros, T. Krizsanoczi, S. Shibaev, and S. Zoletnik, Rev. Sci. Instrum. 83, 013508 (2012).
22.W. W. Heidbrink, K. H. Burrell, Y. Luo, N. A. Pablant, and E. Ruskov, Plasma Phys. Controlled Fusion 46, 1855 (2004).
23.M. Willensdorfer, E. Wolfrum, R. Fischer, J. Schweinzer, M. Sertoli, B. Sieglin, G. Veres, F. Aumayr, and the ASDEX Upgrade Team, Rev. Sci. Instrum. 83, 023501 (2012).
24.V. Vershkov, D. Shelukhin, S. Soldatov, A. Urazbaev, S. Grashin, L. Eliseev, A. Melnikov, and the T-10 team, Nucl. Fusion 45, S203 (2005).
25.A. Kraemer-Flecken, V. Dreval, S. Soldatov, A. Rogister, V. Vershkov, and the TEXTOR-team, Nucl. Fusion 44, 1143 (2004).

Data & Media loading...


Article metrics loading...



A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera’s measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd