Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.W. L. Kruer, The Physics of Laser Plasma Interactions (Westview Press, Colorado, 2003).
2.N. A. Ebrahim, H. A. Baldis, C. Joshi, and R. Benesch, Phys. Rev. Lett. 45, 1179 (1980).
3.I. H. Hutchinson, in Principles of Plasma Diagnostics (Cambridge University Press, Cambridge, 1987), Chap. 4.
4.L. F. Cao, I. Uschmann, F. Zamponi, T. Kampfer, A. Fuhrmann, E. Forster, A. Holl, R. Redmer, S. Toleikis, T. Tschentscher, and S. H. Glenzer, Laser Part. Beams 25, 239 (2007).
5.W. B. Fechner, C. L. Shepard, G. E. Busch, R. J. Schroeder, and J. A. Tarvin, Phys. Fluids 27, 1552 (1984).
6.D. Ress, L. B. DaSilva, R. A. London, J. E. Trebes, S. Mrowka, R. J. Procassini, T. W. Barbee, Jr., and E. E. Lehr, Science 265, 514 (1994).
7.W. E. Quinn, in Diagnostics for Fusion Experiments, edited by E. Sindoni and C. Wharton (Pergamon Press, Oxford, UK, 1979), pp. 421432.
8. The frequency-tripled neodymium glass lasers at the National Ignition Facility (NIF) in Livermore, California, the Laboratory for Laser Energetics (LLE) in Rochester, New York, etc.
9. The krypton fluoride laser at the Nike laser facility in Washington, DC.
10.R. S. Craxton, F. S. Turner, R. Hoefen, C. Darrow, E. F. Gabl, and G. E. Busch, Phys. Fluids B 5, 4419 (1993).
11. In plasma interferometry, the focusing errors resulting from laser pointing errors can distort apparent fringe positions, leading to difficulties in the interpretation of interferograms for electron density profiles.10,28,29
12.K. Takahashi, R. Kodama, K. A. Tanaka, H. Hashimoto, Y. Kato, K. Mima, F. A. Weber, T. W. Barbee, Jr., and L. B. DaSilva, Phys. Rev. Lett. 84, 2405 (2000).
13. The x-ray laser grid image refractometer (XRL-GIR)12 was developed with a grid placed after the plasma, i.e., the probe rays were determined after the plasma. This configuration lacks the capability of directly accessing the probe rays before entering the plasma, differing from that of the original GIR10 which illuminates the plasma with pre-determined probe rays. XRL-GIR thus requires the impact parameters of individual rays to be inferred, depending on accurate knowledge of parameters of the imaging system and the plasma location.
14.J. H. Gardner, A. J. Schmitt, J. P. Dahlburg, C. J. Pawley, S. E. Bodner, S. P. Obenschain, and V. Serlin, Phys. Plasmas 5, 1935 (1998).
15.S. T. Zalesak, A. J. Schmitt, A. L. Velikovich, and J. H. Gardner, Phys. Plasmas 12, 056311 (2005).
16.R. H. Lehmberg and J. Goldhar, Fusion Technol. 11, 532 (1987).
17.S. P. Obenschain, S. E. Bodner, D. Colombant, K. Gerber, R. H. Lehmberg, E. A. McLean, A. N. Mostovych, M. S. Pronko, C. J. Pawley, A. J. Schmitt, J. D. Sethian, V. Serlin, J. A. Stamper, C. A. Sullivan, J. P. Dahlburg, J. H. Gardner, L. Y. Chan, A. V. Deniz, J. Hardgrove, T. Lehecka, and M. Klapisch, Phys. Plasmas 3, 2098 (1996).
18.S. P. Obenschain, J. D. Sethian, and A. J. Schmitt, Fusion Sci. Technol. 56, 594 (2009).
19.A. J. Schmitt, J. W. Bates, S. P. Obenschain, S. T. Zalesak, and D. E. Fyfe, Phys. Plasmas 17, 042701 (2010).
20.J. L. Weaver, J. Oh, L. Phillips, B. Afeyan, J. Seely, D. Kehne, C. M. Brown, S. P. Obenschain, V. Serlin, A. J. Schmitt, U. Feldman, R. H. Lehmberg, E. McLean, and C. Manka, Phys. Plasmas 20, 022701 (2013).
21.B. B. Afeyan and E. A. Williams, Phys. Rev. Lett. 75, 4218 (1995).
22. The optical quality of the GIR system was numerically investigated by tracing probe rays through the f/1.8 collection lens (spherical or aspherical) along the GIR imaging lines. The results suggested that use of the aspherical collection should be necessary for reducing optical aberration which could cause strong image distortion if an f/1.8 spherical optic was used instead.
23. The ray trajectories were computed by solving the eikonal equation in the density profile using the fourth-order Runge-Kutta technique.24
24.W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University Press, Cambridge, 1992).
25.S. Atzeni and J. Meyer-Ter-Vehn, in The Physics of Inertial Fusion, 1st ed. (Clarendon Press, Oxford, 2004), Chaps. 10 and 11.
26.R. S. Craxton, private communication (2013).
27.B. B. Afeyan and E. A. Williams, Phys. Plasmas 4, 3827 (1997).
28.G. Gillman, Opt. Commun. 35, 127 (1980).
29.M. D. J. Burgess, G. B. Gillman, and B. Luther-Davies, J. Appl. Phys. 54, 1787 (1983).

Data & Media loading...


Article metrics loading...



A grid image refractometer (GIR) has been implemented at the Nike krypton fluoride laser facility of the Naval Research Laboratory. This instrument simultaneously measures propagation angles and transmissions of UV probe rays ( = 263 nm, Δ = 10 ps) refracted through plasma. We report results of the first Nike-GIR measurement on a CH plasma produced by the Nike laser pulse (∼1 ns FWHM) with the intensity of 1.1 × 1015 W/cm2. The measured angles and transmissions were processed to construct spatial profiles of electron density () and temperature () in the underdense coronal region of the plasma. Using an inversion algorithm developed for the strongly refracted rays, the deployed GIR system probed electron densities up to 4 × 1021 cm−3 with the density scale length of 120 μm along the plasma symmetry axis. The resulting and profiles are verified to be self-consistent with the measured quantities of the refracted probe light.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd