Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/86/9/10.1063/1.4930604
1.
1.D. F. Hagen, Anal. Chem. 51, 870 (1979).
http://dx.doi.org/10.1021/ac50043a022
2.
2.G. von Helden, M. T. Hsu, N. Gotts, and M. T. Bowers, J. Phys. Chem. 97, 8182 (1993).
http://dx.doi.org/10.1021/j100133a011
3.
3.D. E. Clemmer and M. F. Jarrold, J. Mass Spectrom. 32, 577 (1997).
http://dx.doi.org/10.1002/(SICI)1096-9888(199706)32:6<577::AID-JMS530>3.0.CO;2-4
4.
4.M. F. Mesleh, J. M. Hunter, A. A. Shvartsburg, G. C. Schatz, and M. F. Jarrold, J. Phys. Chem. 100, 16082 (1996).
http://dx.doi.org/10.1021/jp961623v
5.
5.T. Wyttenbach, G. von Helden, J. J. Batka, Jr., D. Carlat, and M. T. Bowers, J. Am. Chem. Soc. Mass Spectrom. 8, 275 (1997).
http://dx.doi.org/10.1016/S1044-0305(96)00236-X
6.
6.A. Politis, A. Y. Park, S.-J. Hyung, D. Barsky, B. T. Ruotolo, and C. V. Robinson, PLoS One 5, e12080 (2010).
http://dx.doi.org/10.1371/journal.pone.0012080
7.
7.T. Wyttenbach, G. von Helden, and M. T. Bowers, J. Am. Chem. Soc. 118, 8355 (1996).
http://dx.doi.org/10.1021/ja9535928
8.
8.R. R. Hudgins, P. Dugourd, J. M. Tenenbaum, and M. F. Jarrold, Phys. Rev. Lett. 78, 4213 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.4213
9.
9.M. F. Jarrold, Acc. Chem. Res. 32, 360 (1999).
http://dx.doi.org/10.1021/ar960081x
10.
10.J. Woenckhaus, Y. Mao, and M. F. Jarrold, J. Phys. Chem. B 101, 847 (1997).
http://dx.doi.org/10.1021/jp963389e
11.
11.J. A. Silveira, K. A. Servage, C. M. Gamage, and D. H. Russell, J. Phys. Chem. A 117, 953 (2013).
http://dx.doi.org/10.1021/jp311278a
12.
12.B. Gao, T. Wyttenbach, and M. T. Bowers, J. Am. Chem. Soc. 131, 4695 (2009).
http://dx.doi.org/10.1021/ja8085017
13.
13.J. Woenckhaus, R. R. Hudgins, and M. F. Jarrold, J. Am. Chem. Soc. 119, 9586 (1997).
http://dx.doi.org/10.1021/ja971236e
14.
14.S. L. Koeniger, S. I. Merenbloom, S. J. Valentine, M. F. Jarrold, H. R. Udseth, R. D. Smith, and D. E. Clemmer, Anal. Chem. 78, 4161 (2006).
http://dx.doi.org/10.1021/ac051060w
15.
15.S. I. Merenbloom, S. L. Koeniger, S. J. Valentine, M. D. Plasencia, and D. E. Clemmer, Anal. Chem. 78, 2802 (2006).
http://dx.doi.org/10.1021/ac052208e
16.
16.H. L. Li, B. Bendiak, W. F. Siems, D. R. Gang, and H. H. Hill, Anal. Chem. 85, 2760 (2013).
http://dx.doi.org/10.1021/ac303273z
17.
17.N. A. Pierson, S. J. Valentine, and D. E. Clemmer, J. Phys. Chem. B 114, 7777 (2010).
http://dx.doi.org/10.1021/jp102478k
18.
18.S. Lee, S. J. Valentine, J. P. Reilly, and D. E. Clemmer, Int. J. Mass Spectrom. 309, 161 (2012).
http://dx.doi.org/10.1016/j.ijms.2011.09.013
19.
19.T.-Y. Kim, S. J. Valentine, D. E. Clemmer, and J. P. Reilly, J. Am. Chem. Soc. Mass Spectrom. 21, 1455 (2010).
http://dx.doi.org/10.1016/j.jasms.2010.04.007
20.
20.S. Zucker, S. Lee, N. Webber, S. Valentine, J. Reilly, and D. Clemmer, J. Am. Chem. Soc. Mass Spectrom. 22, 1477 (2011).
http://dx.doi.org/10.1007/s13361-011-0179-8
21.
21.K. Koyasu, T. Ohtaki, N. Hori, and F. Misaizu, Chem. Phys. Lett. 523, 54 (2012).
http://dx.doi.org/10.1016/j.cplett.2011.12.032
22.
22.B. Bellina, J. M. Brown, J. Ujma, P. Murray, K. Giles, M. Morris, I. Compagnon, and P. E. Barran, Analyst 139, 6348 (2014).
http://dx.doi.org/10.1039/C4AN01656D
23.
23.R. Fromherz, G. Ganteför, and A. A. Shvartsburg, Phys. Rev. Lett. 89, 083001 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.083001
24.
24.M. Vonderach, O. T. Ehrler, P. Weis, and M. M. Kappes, Anal. Chem. 83, 1108 (2011).
http://dx.doi.org/10.1021/ac1029677
25.
25.M. Vonderach, M.-O. Winghart, L. MacAleese, F. Chirot, R. Antoine, P. Dugourd, P. Weis, O. Hampe, and M. M. Kappes, Phys. Chem. Chem. Phys. 16, 3007 (2014).
http://dx.doi.org/10.1039/c3cp54596b
26.
26.M. Vonderach, O. T. Ehrler, K. Matheis, T. Karpuschkin, E. Papalazarou, C. Brunet, R. Antoine, P. Weis, O. Hampe, M. M. Kappes, and P. Dugourd, Phys. Chem. Chem. Phys. 13, 15554 (2011).
http://dx.doi.org/10.1039/c1cp21528k
27.
27.S. Warnke, C. Baldauf, M. T. Bowers, K. Pagel, and G. von Helden, J. Am. Chem. Soc. 136, 10308 (2014).
http://dx.doi.org/10.1021/ja502994b
28.
28.G. Papadopoulos, A. Svendsen, O. V. Boyarkin, and T. R. Rizzo, J. Am. Chem. Soc. Mass Spectrom. 23, 1173 (2012).
http://dx.doi.org/10.1007/s13361-012-0384-0
29.
29.G. Papadopoulos, A. Svendsen, O. V. Boyarkin, and T. R. Rizzo, Faraday Discuss. 150, 243 (2011).
http://dx.doi.org/10.1039/c0fd00004c
30.
30.N. J. A. Coughlan, B. D. Adamson, K. J. Catani, U. Wille, and E. J. Bieske, J. Phys. Chem. Lett. 5, 3195 (2014).
http://dx.doi.org/10.1021/jz501407n
31.
31.B. D. Adamson, N. J. A. Coughlan, R. E. Continetti, and E. J. Bieske, Phys. Chem. Chem. Phys. 15, 9540 (2013).
http://dx.doi.org/10.1039/c3cp51393a
32.
32.B. D. Adamson, N. J. A. Coughlan, P. B. Markworth, R. E. Continetti, and E. J. Bieske, Rev. Sci. Instrum. 85, 123109 (2014).
http://dx.doi.org/10.1063/1.4903753
33.
33.S. A. Shaffer, D. C. Prior, G. A. Anderson, H. R. Udseth, and R. D. Smith, Anal. Chem. 70, 4111 (1998).
http://dx.doi.org/10.1021/ac9802170
34.
34.B. H. Clowers, Y. M. Ibrahim, D. C. Prior, W. F. Danielson, M. E. Belov, and R. D. Smith, Anal. Chem. 80, 612 (2008).
http://dx.doi.org/10.1021/ac701648p
35.
35.P. R. Kemper, N. F. Dupuis, and M. T. Bowers, Int. J. Mass Spectrom. 287, 46 (2009).
http://dx.doi.org/10.1016/j.ijms.2009.01.012
36.
36.C. Uetrecht, I. M. Barbu, G. K. Shoemaker, E. van Duijn, and A. J. R. Heck, Nat. Chem. 3, 126 (2011).
http://dx.doi.org/10.1038/nchem.947
37.
37.Y. Gordiyenko, C. Schmidt, M. D. Jennings, D. Matak-Vinkovic, G. D. Pavitt, and C. V. Robinson, Nat. Commun. 5, 3902 (2014).
http://dx.doi.org/10.1038/ncomms4902
38.
38.S. L. Bernstein, N. F. Dupuis, N. D. Lazo, T. Wyttenbach, M. M. Condron, G. Bitan, D. B. Teplow, J.-E. Shea, B. T. Ruotolo, C. V. Robinson, and M. T. Bowers, Nat. Chem. 1, 326 (2009).
http://dx.doi.org/10.1038/nchem.247
39.
39.R. R. Hudgins and M. F. Jarrold, J. Am. Chem. Soc. 121, 3494 (1999).
http://dx.doi.org/10.1021/ja983996a
40.
40.F. Canon, R. Ballivian, F. Chirot, R. Antoine, P. Sarni-Manchado, J. Lemoine, and P. Dugourd, J. Am. Chem. Soc. 133, 7847 (2011).
http://dx.doi.org/10.1021/ja200534f
41.
41.wxWidgets version 2.8.12, wxWindows Library Licence, 2011.
42.
42.H. E. Revercomb and E. A. Mason, Anal. Chem. 47, 970 (1975).
http://dx.doi.org/10.1021/ac60357a043
43.
43.T. Wyttenbach and M. T. Bowers, J. Phys. Chem. B 115, 12266 (2011).
http://dx.doi.org/10.1021/jp206867a
44.
44.S. Myung, E. R. Badman, Y. J. Lee, and D. E. Clemmer, J. Phys. Chem. A 106, 9976 (2002).
http://dx.doi.org/10.1021/jp0206368
45.
45.H. L. Shi, N. Atlasevich, S. I. Merenbloom, and D. E. Clemmer, J. Am. Chem. Soc. Mass Spectrom. 25, 2000 (2014).
http://dx.doi.org/10.1007/s13361-014-0834-y
46.
46.R. Antoine, J. Lemoine, and P. Dugourd, Mass Spectrom. Rev. 33, 501 (2014).
http://dx.doi.org/10.1002/mas.21402
47.
47.R. Antoine, L. Joly, T. Tabarin, M. Broyer, P. Dugourd, and J. Lemoine, Rapid Commun. Mass Spectrom. 21, 265 (2007).
http://dx.doi.org/10.1002/rcm.2810
48.
48.S. Daly, F. Poussigue, A.-L. Simon, L. MacAleese, F. Bertorelle, F. Chirot, R. Antoine, and P. Dugourd, Anal. Chem. 86, 8798 (2014).
http://dx.doi.org/10.1021/ac502027y
49.
49.S. Daly, A. Kulesza, F. Poussigue, A.-L. Simon, C. M. Choi, G. Knight, F. Chirot, L. MacAleese, R. Antoine, and P. Dugourd, Chem. Sci. 6, 5040 (2015).
http://dx.doi.org/10.1039/c5sc01463h
http://aip.metastore.ingenta.com/content/aip/journal/rsi/86/9/10.1063/1.4930604
Loading
/content/aip/journal/rsi/86/9/10.1063/1.4930604
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/86/9/10.1063/1.4930604
2015-09-15
2016-09-28

Abstract

This manuscript describes a new experimental setup that allows to perform tandem ion mobility spectrometry (IMS) measurements and which is coupled to a high resolution time-of-flight mass spectrometer. It consists of two 79 cm long drift tubes connected by a dual ion funnel assembly. The setup was built to permit laser irradiation of the ions in the transfer region between the two drift tubes. This geometry allows selecting ions according to their ion mobility in the first drift tube, to irradiate selected ions, and examine the ion mobility of the product ions in the second drift tube. Activation by collision is possible in the same region (between the two tubes) and between the second tube and the time-of-flight. IMS-IMS experiments on Ubiquitin are reported. We selected a given isomer of charge state +7 and explored its structural rearrangement following collisional activation between the two drift tubes. An example of IMS-laser-IMS experiment is reported on eosin Y, where laser irradiation was used to produce radical ions by electron photodetachment starting from doubly deprotonated species. This allowed measuring the collision cross section of the radical photo-product, which cannot be directly produced with an electrospray source.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/86/9/1.4930604.html;jsessionid=OU1mqc1q6JTvi7kKoouaN9C_.x-aip-live-02?itemId=/content/aip/journal/rsi/86/9/10.1063/1.4930604&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/86/9/10.1063/1.4930604&pageURL=http://scitation.aip.org/content/aip/journal/rsi/86/9/10.1063/1.4930604'
Right1,Right2,Right3,