Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
D. Barret, J. W. den Herder, L. Piro, L. Ravera, R. Den Hartog, C. Macculi, X. Barcons, M. Page, S. Paltani, G. Rauw, J. Wilms, M. Ceballos, L. Duband, L. Gottardi, S. Lotti, J. de Plaa, E. Pointecouteau, C. Schmid, H. Akamatsu, D. Bagliani, S. Bandler, M. Barbera, P. Bastia, M. Biasotti, M. Branco, A. Camon, C. Cara, B. Cobo, L. Colasanti, J. L. Costa-Kramer, L. Corcione, W. Doriese, J. M. Duval, L. Fabrega, F. Gatti, M. de Gerone, P. Guttridge, R. Kelley, C. Kilbourne, J. van der Kuur, T. Mineo, K. Mitsuda, L. Natalucci, T. Ohashi, P. Peille, E. Perinati, C. Pigot, G. Pizzigoni, C. Pobes, F. Porter, E. Renotte, J. L. Sauvageot, S. Sciortino, G. Torrioli, L. Valenziano, D. Willingale, C. de Vries, and H. van Weers, e-print arXiv:1308.6784 [astro-ph.IM] (2013).
B. Jackson, P. de Korte, J. van der Kuur, P. Mauskopf, J. Beyer, M. Bruijn, A. Cros, J. Gao, D. Griffin, R. den Hartog, M. Kiviranta, G. de Lange, B. van Leeuwen, C. Macculi, L. Ravera, N. Trappe, H. van Weers, and S. Withington, IEEE Trans. Terahertz Sci. Technol. 2, 12 (2012).
R. A. Hijmering, R. H. den Hartog, A. J. van der Linden, M. Ridder, M. P. Bruijn, J. van der Kuur, B. J. van Leeuwen, P. van Winden, and B. Jackson, The 160 TES Bolometer Read-Out Using FDM for SAFARI (SPIE Conference Proceedings, 2014), Vol. 9153, pp. 91531E–191531E–12.
L. Gottardi, H. Akamatsu, M. Bruijn, J.-R. Gao, R. den Hartog, R. Hijmering, H. Hoevers, P. Khosropanah, A. Kozorezov, J. van der Kuur, A. van der Linden, and M. Ridder, J. Low Temp. Phys. 176, 279 (2014).
R. Hijmering, P. Khosropanah, M. Ridder, J. R. Gao, M. Lindeman, H. Hoevers, J. van der Kuur, L. Gottardi, B. Jackson, R. Huiting, and M. van Litsenburg, IEEE Trans. Appl. Supercond. 23, 2101505 (2013).
L. Duband, I. Charles, and J.-M. Duval, Coolers Development for the ATHENA X-IFU Cryogenic Chain (SPIE Conference Proceedings, 2014), Vol. 9144, pp. 91445W–191445W–10.
N. Luchier and L. Duband, in Cryocoolers 13, edited by J. Ross and G. Ronald (Springer US, 2005), pp. 561566.˙70
R. A. S. Celozzi and G. Lovat, Electromagnetic Shielding (John Wiley and Sons, Inc, 2008).
J. F. Hoburg, IEEE Trans. Electromagn. Compat. 37, 574 (1995).
A. Moldovanu, H. Chiriac, C. Ioan, E. Moldovanu, M. Lozovan, and V. Apetrei, Int. J. Appl. Electromagn. Mech. 9, 421 (1998).
Z. Q. Cui, Z. J. Chen, X. F. Xie, X. Y. Peng, Z. M. Hu, T. F. Du, L. J. Ge, X. Zhang, X. Yuan, Z. W. Xia, L. Q. Hu, G. Q. Zhong, S. Y. Lin, B. N. Wan, T. S. Fan, J. X. Chen, X. Q. Li, and G. H. Zhang, Rev. Sci. Instrum. 85, 11D829 (2014).
K. Grohmann and D. Hechtfischer, Cryogenics 17, 579 (1977).
Y. Mizugaki and R. Kashiwa, J. Phys.: Conf. Ser. 97, 012056 (2008).
Y. Ishisaki, H. Kurabayashi, A. Hoshino, T. Ohashi, T. Yoshino, T. Hagihara, K. Mitsuda, and K. Tanaka, J. Low Temp. Phys. 151, 131 (2008).
T. Ohyama, T. Minemoto, M. Itoh, and K. Hoshino, IEEE Trans. Magn. 29, 3583 (1993).
K. Kamiya, B. Warner, and M. DiPirro, Cryogenics 41, 401 (2001).
M. Hollister, H. McGregor, A. Woodcraft, D. Bintley, M. MacIntosh, and W. Holland, Proc. of SPIE 7020, 702023 (2008).
L. Gozzelino, A. Agostino, R. Gerbaldo, G. Ghigo, and F. Laviano, Supercond. Sci. Technol. 25, 115013 (2012).
U. Hishi, R. Fujimoto, T. Kunihisa, S. Takakura, T. Mitsude, K. Kamiya, M. Kotake, A. Hoshino, and K. Shinozakil, J. Low Temp. Phys. 176, 1075 (2014).
F. Gomory, M. Solovyov, and J. Souc, Supercond. Sci. Technol. 28, 044001 (2015).
A. Mager, IEEE Trans. Magn. 6, 67 (1970).
B. Vasil‘ev, V. Ignatovich, and E. Kolycheva, Sov. Phys. Tech. Phys. 23, 1100 (1978).
J. R. Claycomb and J. H. Miller, Rev. Sci. Instrum. 70, 4562 (1999).
C. P. Poole, H. A. Farach, R. J. Creswick, and R. Prozorov, Superconductivity (Academic Press, London, UK, 2007).
R. Ackermann, F. Wiekhorst, A. Beck, D. Gutkelch, F. Ruede, A. Schnabel, U. Steinhoff, D. Drung, J. Beyer, C. ABmann, L. Trahms, H. Koch, T. Schurig, R. Fischer, M. Bader, H. Ogata, and H. Kado, IEEE Trans. Appl. Supercond. 17, 827 (2007).
J. Mester, J. M. Lockhart, B. Muhlfelder, D. Murray, and M. Taber, Adv. Space Res. 25, 1185 (2000).
B. Cabrera and F. van Kann, Acta Astronaut. 5, 125 (1978).
Q. Geng, H. Minami, K. Chihara, J. Yuyama, and E. Goto, J. Appl. Phys. 72, 2411 (1992).
R. Clem, IEEE Trans. Magn. 19, 1278 (1983).
B. xin Xu and W. O. Hamilton, Rev. Sci. Instrum. 58, 311 (1987).
M. Taber, D. Murray, J. Lockhart, D. Frank, and D. Donegan, Adv. Cryog. Eng. 39(A), 161 (1994).
M. M. Fang, J. R. Clem, and D. K. Finnemore, IEEE Trans. Magn. MAG-23, 1196 (1987).
J. Ferreirinho and D. Blair, Cryogenics 19, 702 (1979).
Registered trademark of Vacuumschmelze GmbH & Co. KG.
R. M. Bozorth, Ferromagnetism (Wiley-IEEE Press, Piscataway, NJ, 1993), Vol. 10.
R. Pecher, M. McCulloch, S. Chapman, L. Prigozhin, and C. Elliott, in Proceedings of the 6th European Conference on Applied Superconductivity EUCAS, Sorrento, Italy, 14-18 September 2003.
F. Grilli, R. Brambilla, and L. Martini, IEEE Trans. Appl. Supercond. 17, 3155 (2007).
W. M. Roach, D. B. Beringer, Z. Li, C. Clavero, and R. A. Lukaszew, IEEE Trans. Appl. Supercond. 23, 8600203 (2013).
T. O. M. Itoh, T. Minemoto, K. Numata, and K. Hoshinol, Phys. D: Appl. Phys. 25, 1630 (1992).
J. Wang and M. Sayerl, IEEE Trans. Appl. Supercond. 3, 185 (1993).
J. Karthikeyan, A. Paithankar, R. Prasad, and N. C. Son, Supercond. Sci. Technol. 7, 949 (1994).
T. Cavallin, R. Quarantiello, A. Matrone, and G. Giunchi, J. Phys.: Conf. Ser. 43, 1015 (2006).
F. Fagnard, S. Elschner, A. Hobl., J. Bock, B. Vanderheyden, and P. Vanderbemden, Supercond. Sci. Technol. 25, 104006 (2012).
P. Kneisel, G. Ciovati, J. Sekutowicz, A. Matheisen, X. Singer, and W. Singer, in Particle Accelerator Conference, 2007. PAC. (IEEE, 2007), pp. 24842486.
F. Pobell, Matter and Methods At Low Temperatures, 3rd ed. (Springer-Verlag Berlin Heidelberg, 2007).
E. Ramsden, Hall-effect Sensors: Theory and Application (Newnes, 2006).
M. Tinkham, Introduction to Superconductivity (McGraw-Hill International Editions Signapore, 1996).
C. P. Bean, Rev. Mod. Phys. 36, 31 (1964).
S. Denis, L. Dusoulier, M. Dirickx, P. Vanderbemden, R. Cloots, M. Ausloos, and B. Vanderheyden, Supercond. Sci. Technol. 20, 192 (2007).
L. L. VantHull and J. E. Mercereau, Rev. Sci. Instrum. 34, 1238 (1963).
Y. Xiao, W. Bencze, and D. Hipkins, Czech. J. Phys. 46, 2873 (1996).

Data & Media loading...


Article metrics loading...



The paper describes the development and the experimental validation of a cryogenic magnetic shielding system for transition edge sensor based space detector arrays. The system consists of an outer mu-metal shield and an inner superconducting niobium shield. First, a basic comparison is made between thin-walled mu-metal and superconducting shields, giving an off-axis expression for the field inside a cup-shaped superconductor as a function of the transverse external field. Starting from these preliminary analytical considerations, the design of an adequate and realistic shielding configuration for future space flight applications (either X-IFU [D. Barret , e-print arXiv:1308.6784 [astro-ph.IM] (2013)] or SAFARI [B. Jackson , IEEE Trans. Terahertz Sci. Technol. , 12 (2012)]) is described in more detail. The numerical design and verification tools (static and dynamic finite element method (FEM) models) are discussed together with their required input, i.e., the magnetic-field dependent permeability data. Next, the actual manufacturing of the shields is described, including a method to create a superconducting joint between the two superconducting shield elements that avoid flux penetration through the seam. The final part of the paper presents the experimental verification of the model predictions and the validation of the shield’s performance. The shields were cooled through the superconducting transition temperature of niobium in zero applied magnetic field (<10 nT) or in a DC field with magnitude ∼100 T, applied either along the system’s symmetry axis or perpendicular to it. After cool-down, DC trapped flux profiles were measured along the shield axis with a flux-gate magnetometer and the attenuation of externally applied AC fields (100 T, 0.1 Hz, both axial and transverse) was verified along this axis with superconducting quantum interference device magnetometers. The system’s measured on-axis shielding factor is greater than 106, well exceeding the requirement of the envisaged missions. Following field-cooling in an axial field of 85 T, the residual internal DC field normal to the detector plane is less than 1 T. The trapped field patterns are compared to the predictions of the dynamic FEM model, which describes them well in the region where the internal field exceeds 6 T.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd