Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
H. J. Whitlow, G. Possnert, and C. S. Petersson, “Quantitative mass and energy dispersive elastic recoil spectrometry: Resolution and efficiency considerations,” Nucl. Instrum. Methods Phys. Res., Sect. B 27, 448 (1987).
S. Giangrandi, T. Sajavaara, B. Brijs, K. Arstila, A. Vantomme, and W. Vandervorst, “Low-energy heavy-ion TOF-ERDA setup for quantitative depth profiling of thin films,” Nucl. Instrum. Methods Phys. Res., Sect. B 266, 5144 (2008).
T. Sajavaara, J. Jokinen, K. Arstila, and J. Keinonen, “TOF-ERDA spectrometry applied for the analysis of Be migration in (100) GaAs,” Nucl. Instrum. Methods Phys. Res., Sect. B 139, 225 (1998).
M. Čekada, M. Kahn, P. Pelicon, Z. Siketić, I. Bogdanović Radović, W. Waldhauser, and S. Paskvale, “Analysis of nitrogen-doped ion-beam-deposited hydrogenated diamond-like carbon films using ERDA/RBS, TOF-ERDA, and Raman spectroscopy,” Surf. Coat. Technol. 211, 72 (2012).
P. N. Johnston, W. B. Stannard, J. F. Scott, I. F. Bubb, M. El Bouanani, D. D. Cohen, and N. Dytlewski, “Application of HIERDA to strontium bismuth tantalate ferroelectric films,” Mater. Sci. Forum 248-249, 295 (1997).
M. Rubel, V. Phillips, L. Marot, P. Petersson, A. Pospieszczyk, and B. Schweer, “Nitrogen and neon retention in plasma-facing materials,” J. Nucl. Mater. 415, S223 (2011).
P. Petersson, M. Rubel, G. Possnert, S. Brezinsek, and B. Pegourie, “Nuclear reaction and heavy ion ERD analysis of wall materials from controlled fusion devices: Deuterium and nitrogen-15 studies,” Nucl. Instrum. Methods Phys. Res., Sect. B 273, 113 (2012).
P. Petersson, M. Rubel, H. G. Esser, J. Likonen, S. Koivuranta, A. Widdowson, and JET-EFDA Contributors, “Co-deposited layers in the divertor region of JET-ILW,” J. Nucl. Mater. 463, 814 (2015).
P. Ström, P. Petersson, and M. Rubel, “Design of a gas ionization chamber for elastic recoil detection analysis of fusion reactor wall materials,” in 12th Kudowa School “Towards Fusion Energy”, Programme and Contributions, edited byK. Jakubowska and A. Czarnecka (Institute of Plasma Physics and Laser Microfusion, Warzaw, 2014), pp. 7174.
M. Shimada, D. J. Campbell, V. Mukhovatov, M. Fujiwara, N. Kirneva, K. Lackner, M. Nagami, V. D. Pustovitov, N. Uckan, J. Wesley, N. Asakura, A. E. Costley, A. J. H. Donné, E. J. Doyle, A. Fasoli, C. Gormezano, Y. Gribov, O. Gruber, T. C. Hender, W. Houlberg, S. Ide, Y. Kamada, A. Leonard, B. Lipschultz, A. Loarte, K. Miyamoto, T. H. Osborne, A. Polevoi, and A. C. C. Sips, “Progress in the ITER physics basis, chapter 1: Overview and summary,” Nucl. Fusion 47, S1 (2007).
M. Merola, F. Escourbiac, A. R. Raffray, P. Chappuis, T. Hirai, and S. Gicquel, “Engineering challenges and development of the ITER blanket system and divertor,” Fusion Eng. Des. 96-97, 34 (2015).
R. Mitteau, B. Calcagno, P. Chappuis, R. Eaton, S. Gicquel, J. Chen, A. Labusov, A. Martin, M. Merola, R. Raffray, M. Ulrickson, F. Zacchia, and Blanket Integrated Product Team, “The design of the ITER first wall panels,” Fusion Eng. Des. 88, 568 (2013).
M. Rubel, G. De Temmerman, J. P. Coad, J. Vince, J. R. Drake, F. Le Guern, A. Murari, R. A. Pitts, C. Walker, and JET-EFDA Contributors, “Mirror test for international thermonuclear experimental reactor at the JET tokamak: An overview of the program,” Rev. Sci. Instrum. 77, 063501 (2006).
D. Ivanova, M. Rubel, A. Widdowson, P. Petersson, J. Likonen, L. Marot, E. Alves, A. Garcia-Carrasco, G. Pintsuk, and JET-EFDA Contributors, “An overview of the comprehensive first mirror test in JET with ITER-like wall,” Phys. Scr. T159, 014011 (2014).
P. Ström, P. Petersson, M. Rubel, A. Weckmann, S. Brezinsek, A. Kreter, S. Möller, and K. Rozniatowski, “Characterisation of surface layers formed on plasma-facing components in controlled fusion devices: Role of heavy-ion elastic recoil detection,” Vacuum 122, 260 (2015).
M. Rubel, A. Weckmann, P. Ström, P. Petersson, A. Garcia-Carrasco, S. Brezinsek, J. Coenen, A. Kreter, S. Möller, P. Wienhold, T. Wauters, and E. Fortuna-Zaleśna, “Tracer techniques for the assessment of material migration and surface modification of plasma-facing components,” J. Nucl. Mater. 463, 280 (2015).
C. Kottler, M. Döbeli, F. Glaus, and M. Suter, “A spectrometer for low energy heavy ion ERDA,” Nucl. Instrum. Methods Phys. Res., Sect. B 248, 155 (2006).
A. M. Müller, M. Döbeli, M. Suter, and H. A. Synal, “Performance of the ETH gas ionization chamber at low energy,” Nucl. Instrum. Methods Phys. Res., Sect. B 287, 94 (2012).
M. Martschini, J. Buchriegler, P. Collon, W. Kutschera, J. Lachner, W. Lu, A. Priller, P. Steier, and R. Golser, “Isobar separation of 93Zr and 93Nb at 24 MeV with a new multi-anode ionization chamber,” Nucl. Instrum. Methods Phys. Res., Sect. B 361, 201 (2015).
F. Busch, W. Pfeffer, B. Kohlmeyer, D. Schüll, and F. Pühlhoffer, “A position-sensitive transmission time detector,” Nucl. Instrum. Methods Phys. Res., Sect. B 171, 71 (1980).
MCP (Microchannel Plate) and MCP Assembly, Hamamatsu Photonics K.K. Iwata, Japan,, 05 April 2016.
G. F. Knoll, “The gridded ion chamber,” in Radiation Detection and Measurement, 4th ed. (John Wiley & Sons, Inc., Hoboken NJ, 2010), pp. 153154.
K. Arstila, J. Julin, M. I. Laitinen, J. Aalto, T. Konu, S. Kärkkäinen, S. Rahkonen, M. Raunio, J. Itkonen, J. P. Santanen, T. Tuovinen, and T. Sajavaara, “Potku—New analysis software for heavy ion elastic recoil detection analysis,” Nucl. Instrum. Methods Phys. Res., Sect. B 331, 34 (2014).
C. Pascual-Izarra and N. P. Barradas, “Introducing routine pulse height defect corrections in IBA,” Nucl. Instrum. Methods Phys. Res., Sect. B 266, 1866 (2008).

Data & Media loading...


Article metrics loading...



A dedicated detector system for heavy ion elastic recoil detection analysis at the Tandem Laboratory of Uppsala University is presented. Benefits of combining a time-of-flight measurement with a segmented anode gas ionization chamber are demonstrated. The capability of ion species identification is improved with the present system, compared to that obtained when using a single solid state silicon detector for the full ion energy signal. The system enables separation of light elements, up to Neon, based on atomic number while signals from heavy elements such as molybdenum and tungsten are separated based on mass, to a sample depth on the order of 1 m. The performance of the system is discussed and a selection of material analysis applications is given. Plasma-facing materials from fusion experiments, in particular metal mirrors, are used as a main example for the discussion. Marker experiments using nitrogen-15 or oxygen-18 are specific cases for which the described improved species separation and sensitivity are required. Resilience to radiation damage and significantly improved energy resolution for heavy elements at low energies are additional benefits of the gas ionization chamber over a solid state detector based system.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd