Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
H. Ohsumi, K. Tajima, N. Wakabayashi, Y. Shimodo, K. Kamishima, and T. Goto, J. Phys. Soc. Jpn., Part 1 66, 1896 (1997).
H. Ohsumi and K. Tajima, J. Phys. Soc. Jpn., Part 1 67, 1883 (1998).
S. Shimomura, K. Tajima, N. Wakabayashi, S. Kobayashi, H. Kuwahara, and Y. Tokura, J. Phys. Soc. Jpn., Part 1 68, 1943 (1999).
Y. Ma, S. Awaji, K. Watanabe, M. Matsumoto, and N. Kobayashi, Solid State Commun. 113, 671 (2000).
V. K. Pecharsky, A. P. Holm, K. A. Gschneidner, and R. Rink, Phys. Rev. Lett. 91, 197204 (2003).
A. P. Holm, V. K. Pecharsky, K. A. Gschneidner, R. Rink, and M. N. Jirmanus, Rev. Sci. Instrum. 75, 1081 (2004).
V. Kiryukhin, B. Keimer, J. P. Hill, S. M. Coad, and D. McK. Paul, Phys. Rev. B 54, 7269 (1996).
K. Katsumata, Phys. Scr. 71, CC7CC13 (2005).
Y. H. Matsuda, Y. Ueda, H. Nojiri, T. Takahashi, T. Inami, K. Ohwada, Y. Murakami, and T. Arima, Physica B 346, 519 (2004).
T. Inami, K. Ohwada, Y. H. Matsuda, Y. Ueda, H. Nojiri, Y. Murakami, T. Arima, H. Ohta, W. Zhang, and K. Yoshimura, Nucl. Instrum. Methods Phys. Res., Sect. B 238, 233 (2005).
Y. H. Matsuda, T. Inami, K. Ohwada, Y. Murata, H. Nojiri, Y. Murakami, H. Ohta, W. Zhang, and K. Yoshimura, J. Phys. Soc. Jpn., Part 1 75, 024710 (2006).
P. Frings, J. Vanacken, C. Detlefs, F. Duc, J. E. Lorenzo, M. Nardone, J. Billette, A. Zitouni, W. Bras, and G. L. J. A. Rikken, Rev. Sci. Instrum. 77, 063903 (2006).
Z. Islam, J. P. C. Ruff, H. Nojiri, Y. H. Matsuda, K. A. Ross, B. D. Gaulin, Z. Qu, and J. C. Lang, Rev. Sci. Instrum. 80, 113902 (2009).
J. Billette, F. Duc, P. Frings, M. Nardone, A. Zitouni, C. Detlefs, T. Roth, W. Crichton, J. E. Lorenzo, and G. L. J. A. Rikken, Rev. Sci. Instrum. 83, 043904 (2012).
Z. Islam, D. Capatina, J. P. C. Ruff, R. K. Das, E. Trakhtenberg, H. Nojiri, Y. Narumi, U. Welp, and P. C. Canfield, Rev. Sci. Instrum. 83, 035101 (2012).
Y. H. Matsuda and T. Inami, J. Phys. Soc. Jpn., Part 1 82, 021009 (2013).
F. Duc, X. Fabrèges, T. Roth, C. Detlefs, P. Frings, M. Nardone, J. Billette, M. Lesourd, L. Zhang, A. Zitouni, P. Delescluse, J. Béard, J. P. Nicolin, and G. L. J. A. Rikken, Rev. Sci. Instrum. 85, 053905 (2014).
S. Wang, A. E. Kovalev, A. V. Suslov, and T. Siegrist, Rev. Sci. Instrum. 86, 123902 (2015).
Y. Mitsui, K. Koyama, and K. Watanabe, Sci. Technol. Adv. Mater. 10, 014612 (2009).
Y. Mitsui, K. Koyama, K. Takahashi, and K. Watanabe, Rev. Sci. Instrum. 82, 125104 (2011).
R. K. Das, Z. Islam, J. P. C. Ruff, R. P. Sawh, R. Weinstein, P. C. Canfield, J.-W. Kim, and J. C. Lang, Rev. Sci. Instrum. 83, 065103 (2012).
L. Brzozowski, A. Ganguly, M. Pop, Z. Wen, R. Bennett, R. Fahrig, and J. A. Rowlands, Med. Phys. 33, 3033 (2006).
P. Rajiv, B. Hinrichsen, R. Dinnebier, M. Jansen, and M. Joswig, Powder Diffr. 22, 3 (2007).
Y. Tomioka, A. Asamitsu, Y. Moritomo, H. Kuwahara, and Y. Tokura, Phys. Rev. Lett. 74, 25 (1995).
A. Banerjee, A. K. Pramanik, K. Kumar, and P. Chaddah, J. Phys.: Condens. Matter 18, L605L611 (2006).
R. Mahendiran, M. R. Ibarra, C. Marquina, B. Garcia-Landa, L. Morellon, A. Maignan, B. Raveau, A. Arulraj, and C. N. R. Rao, Appl. Phys. Lett. 82, 242 (2003).
H. Kuwahara, T. Okuda, Y. Tomioka, A. Asamitsu, and Y. Tokura, Phys. Rev. Lett. 82, 21 (1999).
R. Rawat, K. Mukherjee, K. Kumar, A. Banerjee, and P. Chaddah, J. Phys.: Condens. Matter 19, 256211 (2007).
M. Uehara, S. Mori, C. H. Che, and S.-W. Cheong, Nature 399, 560 (1999).
V. Kiryukhin, B. G. Kim, V. Podzorov, S.-W. Cheong, T. Y. Koo, J. P. Hill, I. Moon, and Y. H. Jeong, Phys. Rev. B 63, 024420 (2000).
T. Z. Ward, J. D. Budai, Z. Gai, J. Z. Tischler, L. Yin, and J. Shen, Nat. Phys. 5, 885 (2009).
J. Q. He, V. Volkov, T. Asaka, S. Chaudhuri, R. C. Budhani, and Y. Zhu, Phys. Rev. B 82, 224404 (2010).
D. D. Sarma, D. Topwal, U. Manju, S. R. Krishnakumar, M. Bertolo, S. La Rosa, G. Cautero, T. Y. Koo, P. A. Sharma, S.-W. Cheong, and A. Fujimori, Phys. Rev. Lett. 93, 097202 (2004).
Mark H. Burkhardt, M. A. Hossain, S. Sarkar, Y.-D. Chuang, A. G. Cruz Gonzalez, A. Doran, A. Scholl, A. T. Young, N. Tahir, Y. J. Choi, S.-W. Cheong, H. A. Dur¨r, and J. Stohr, Phys. Rev. Lett. 108, 237202 (2012).
C. Israel, W. Wu, and A. de Lozanne, Appl. Phys. Lett. 89, 032502 (2006).
L. Ghivelder, R. S. Freitas, M. G. das Virgens, M. A. Continentino, H. Martinho, L. Granja, M. Quintero, G. Leyva, P. Levy, and F. Parisi, Phys. Rev. B 69, 214414 (2004).
L. Ghivelder and F. Parisi, Phys. Rev. B 71, 184425 (2005).

Data & Media loading...


Article metrics loading...



A low-temperature and high magnetic field powder x-ray diffractometer (XRD) has been developed at UGC-DAE CSR (UGC: University Grant Commission, DAE: Department of Atomic Energy, and CSR: Consortium for scientific research), Indore, India. The setup has been developed around an 18 kW rotating anode x-ray source delivering Cu-K x-rays coming from a vertical line source. It works in a symmetric θ-2θ parallel beam geometry. It consists of a liquid helium cryostat with an 8 T split-pair Nb-Ti superconducting magnet comprising two x-ray windows each covering an angular range of 65°. This is mounted on a non-magnetic type heavy duty goniometer equipped with all necessary motions along with data collection accessories. The incident x-ray beam has been made parallel using a parabolic multilayer mirror. The scattered x-ray is detected using a NaI detector through a 0.1° acceptance solar collimator. To control the motions of the goniometer, a computer programme has been developed. The wide-angle scattering data can be collected in a range of 2°–115° of 2θ with a resolution of ∼0.1°. The whole setup is tightly shielded for the scattered x-rays using a lead hutch. The functioning of the goniometer and the artifacts arising possibly due to the effect of stray magnetic field on the goniometer motions, on the x-ray source, and on the detector have been characterized by collecting powder XRD data of a National Institute of Standards and Technology certified standard reference material LaB (SRM-660b) and Si powder in zero-field and in-field conditions. Occurrence of field induced structural-phase transitions has been demonstrated on various samples like PrSrMnO, NdSrMnO and LaPrCaMnO by collecting data in zero field cool and field cool conditions.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd