Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
M. Miles, “Probing the nanoworld,” Nanotechnology 20, 430208 (2009).
J. Brugger, “Nanotechnology impact on sensors,” Nanotechnology 20, 430206 (2009).
C. Pacoret and S. Régnier, “A review of haptic optical tweezers for an interactive microworld exploration,” Rev. Sci. Instrum. 84, 081301 (2013).
L. Chassagne, S. Blaize, P. Ruaux, S. Topcu, P. Royer, Y. Alayli, and G. Lérondel, “Multi-scale scanning probe microscopy,” Rev. Sci. Instrum. 81, 086101 (2010).
G. Lérondel, A. Sinno, L. Chassagne, S. Blaize, P. Ruaux, A. Bruyant, S. Topçu, P. Royer, and A. Alayli, “Enlarged near-field optical imaging,” J. Appl. Phys. 106, 044913 (2009).
A. J. Fleming, “A review of nanometer resolution position sensors: Operation and performance,” Sens. Actuators, A 190, 106126 (2013).
N. Bobroff, “Recent advances in displacement measuring interferometry,” Meas. Sci. Technol. 4, 907 (1993).
A. Yacoot and N. Cross, “Measurement of picometer non-linearity in an optical grating encoder using x-ray interferometry,” Meas. Sci. Technol. 14, 148152 (2003).
M. Durand, J. Lawall, and Y. Wang, “High-accuracy Fabry-Perot displacement interferometry using fiber lasers,” Meas. Sci. Technol. 22, 094025 (2011).
M. Kim, W. Moon, E. Yoon, and K.-R. Lee, “A new capacitive displacement sensor with high accuracy and long-range,” Sens. Actuators, A 130-131, 135141 (2006).
M. Yasin, S. W. Harun, K. Karyono, and H. Ahmad, “Fiber optic displacement sensor using a multimode bundle fiber,” Microwave Opt. Technol. Lett. 50, 661663 (2008).
R. Dib, Y. Alayli, and P. Wagstaff, “A broadband amplitude-modulated fiber optic vibrometer with nanometric accuracy,” Measurement 35, 211219 (2004).
A. Khiat, F. Lamarque, C. Prelle, P. Phouille, M. Leester-Schädel, and S. Büttganbach, “Two-dimension fiber optic sensor for high-resolution and long-range linear measurements,” Sens. Actuators, A 158, 4350 (2010).
L. Perret, L. Chassagne, S. Topcu, P. Ruaux, B. Cagneau, and Y. Alayli, “Fiber optics sensor for sub-nanometric displacement and wide bandwidth systems,” Sens. Actuators, A 165, 189193 (2011).
A. Missoffe, S. Topcu, P. Ruaux, B. Cagneau, and Y. Alayli, “New simple optical sensor: From nanometer resolution to centimeter displacement range,” Sens. Actuators, A 176, 4652 (2012).
D. Ponceau, P. Millier, and S. Olivier, “Subnanometric Michelson interferometry for seismological applications,” Proc. SPIE 7003, 70030U (2008).
F. Malbet, P. Kern, I. Schanen-Duport, J.-P. Berger, K. Rousselet-Perraut, and P. Benech, Astron. Astrophys., Suppl. Ser. 138, 135 (1999).
D. W. Allan, H. Hellwig, and D. J. Glaze, “An accuracy algorithm for anatomic time scale,” Metrologia 11, 133 (1975).
A. J. Fleming, A. G. Wills, and S. O. R. Moheimani, “Sensor fusion for improved control of piezoelectric tube scanners,” IEEE Trans. Control Syst. Technol. 15(6), 12656536 (2008).
Y. Zhu, A. Bazaei, S. O. R. Moheimani, and M. Yuce, “Design modeling andcontrol of a micromachined nanopositioner with integrated electrothermal actuation and sensing,” J. Microelectromech. Syst. 20(3), 711719 (2011).
A. J. Fleming and B. Routley, “A closed-loop phase-locked interferometer for wide bandwidth position sensing,” Rev. Sci. Instrum. 86, 115001 (2015).
K. Karrai and P. Braun, “Miniature long-range laser displacement sensor,” in Proceedings Actuator (Bremen, Germany, 2010), pp. 285288.
D. Rugar, H. J. Mamin, R. Erlandsson, J. E. Stern, and B. D. Terris, Rev. Sci. Instrum. 59, 23372340 (1988).
B. W. Hoogenboom, P. L. T. M. Frederix, J. L. Yang, S. Martin, Y. Pellmont, M. Steinacher, S. Zäch, E. Langenbach, H.-J. Heimbeck, A. Engel, and H. J. Hug, “A Fabry–Perot interferometer for micrometer-sized cantilevers,” Appl. Phys. Lett. 86, 074101 (2005).
H. I. Rasool, P. R. Wilkinson, A. Z. Stieg, and J. K. Gimzewski, “A low noise all-fiber interferometer for high resolution frequency modulated atomic force microscopy imaging in liquids,” Rev. Sci. Instrum. 81, 023703 (2010).
L. Bellon, S. Ciliberto, H. Boubaker, and L. Guyon, “Differential interferometry with a complex contrast,” Opt. Commun. 207, 4956 (2002).
Y. Martin, C. C. William, and H. K. Wickramasinghe, “Atomic force microscope–force mapping and profiling on a sub 100-Å scale,” J. Appl. Phys. 61(10), 4723 (1987).
A. J. den Boef, “Scanning force microscopy using a simple low-noise interferometer,” Appl. Phys. Lett. 55, 439 (1989).
R. M. Delarue, R. F. Humphryes, L. M. Mason, and E. A. Ash, Proc. IEEE 119, 117 (1972).
P. Paolino, F. A. A. Sandoval, and L. Bellon, “Quadrature phase interferometer for high resolution force spectroscopy,” Rev. Sci. Instrum. 84, 095001 (2013).
D. Rugar, H. J. Mamin, and P. Guethner, “Improved fiber-optic interferometer for atomic force microscopy,” Appl. Phys. Lett. 55, 25882590 (1989).
C. Schönenberger and S. F. Alvarado, “A differential interferometer for force microscopy,” Rev. Sci. Instrum. 60, 31313134 (1989).
P. J. Mulhern, T. Hubbard, C. S. Arnold, B. L. Blackford, and M. H. Jericho, Rev. Sci. Instrum. 62, 12801284 (1991).
G. Meyer and N. M. Amer, Appl. Phys. Lett. 53, 2400 (1988).
C. A. J. Putman, B. G. de Grooth, N. F. van Hulst, and J. Greve, J. Appl. Phys. 72, 612 (1992).
M. G. L. Gustafson and J. Clarke, J. Appl. Phys. 76, 172181 (1994).
T. Fukuma, M. Kimura, K. Kobayashi, K. Matsushige, and H. Yamada, Rev. Sci. Instrum. 76, 053704 (2005).
T. Fukuma and S. P. Jarvis, Rev. Sci. Instrum. 77, 043701 (2006).
T. Fukuma, Rev. Sci. Instrum. 80, 23707 (2009).
R. Enning, D. Ziegler, A. Nievergelt, R. Friedlos, K. Venkatarani, and A. Stemmer, Rev. Sci. Instrum. 82, 043705 (2011).

Data & Media loading...


Article metrics loading...



In this paper, we present a compact, inexpensive, and easy-to-use optical chip interferometer based on the telecom integrated waveguide technology. The measurement evaluation is focused on the resolution and the noise level of the sensor. The power spectral density of 100 fm Hz−1/2 @ 10 kHz is reached in static conditions. The same level is obtained with the standard Allan deviation for both short and long term measurements. Dynamic performances are also evaluated with sub-nanometer measurements made with piezoelectric systems. The potential bandwidth of the sensor is very high and is currently only limited by electronics (250 kHz).


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd