Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
U. Kogelschatz, B. Eliasson, and W. Egli, “Dielectric-barrier discharges. Principle and applications,” J. Phys. IV 07(C4), C4-47C4-66 (1997).
Z. Buntat, I. R. Smith, and N. A. M. Razali, “Ozone generation using atmospheric pressure glow discharge in air,” J. Phys. D: Appl. Phys. 42, 15 (2009).
F. Zoran, “Application of dielectric barrier discharge,” in IEEE Conference Proceedings of 12th International Conference on High Power Particle Beams, BEAMS -98 (IEEE, 1998), Vol. 1, pp. 117120.
Y. Liu, S. Mei, D. Iya Sou, S. Cavadias, and S. Ognier, “Carbamazepine removal from water by dielectric barrier discharge: Comparison of ex situ and in situ discharge on water,” Chem. Eng. Process. 56, 1018 (2012).
M. Hijosa Valsero, R. Molina, H. Schikora, M. Muller, and J. M. Bayona, “Removal of priority pollutants from water by means of dielectric barrier discharge atmospheric plasma,” J. Hazard. Mater. 262, 664673 (2013).
S. L. Daniel, “On the ionization of air for removal of noxious effluvia,” IEEE Trans. Plasma Sci. 30(4), 14711481 (2002).
K. D. Weltmann and T. Von Woedtke, “Campus PlasmaMed—From basic research to clinical proof,” IEEE Trans. Plasma Sci. 39(4), 10151025 (2011).
Y. Kim, S. Jin, G.-H. Han, G. Chung Kwon, J. Joo Choi, E. Ha Choi, H. S. Uhm, and G. Cho, “Plasma apparatus for biomedical applications,” IEEE Trans. Plasma Sci. 43(4), 944950 (2015).
K. Luria, N. Lavie, and U. Even, “Dielectric barrier discharge source for supersonic beams,” Rev. Sci. Instrum. 80, 104102 (2009).
A. Majumdar and R. Hippler, “Development of dielectric barrier discharge plasma processing apparatus for mass spectroscopy and thin film deposition,” Rev. Sci. Instrum. 78, 075103 (2007).
J. A. López-Fernández, R. Peña-Eguiluz, A. Mercado-Cabrera, B. Jaramillo-Sierra, R. López-Callejas, R. Valencia-Alvarado, A. E. Muñoz-Castro, B. Rodríguez-Méndez, S. R. Barocio, and A. de la Piedad-Beneitez, “DBD reactor instrumentation for NOX degradation,” Eur. Phys. J.: Appl. Phys. 57(1), 1080210806 (2012).
D. Liu, J. Niu, and N. Yu, “Optical emission characteristics of medium- to high-pressure N2 dielectric barrier discharge plasmas during surface modification of polymers,” J. Vac. Sci. Technol., A 29(6), 061506-1061506-10 (2011).
M. Peddinghaus, H. Ayan, A. Fridman, M. Balasubramanian, A. Gutsol, A. Brooks, and G. Friedman, “Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air,” Plasma Chem. Plasma Process. 26(4), 425442 (2006).
X. Li, J. Chen, and L. Gao, “Enhanced degradation of phenol by carbonated ions with dielectric barrier discharge,” IEEE Trans. Plasma Sci. 40(1), 112117 (2012).
B. Jiang, J. Zhang, Q. Lu, and W. V. Mingto, “Degradation of azo dye using non-thermal plasma advanced oxidation process in a circulatory airtight reactor system,” Chem. Eng. J. 204-206, 3239 (2012).
Y.-C. Shin, B. Kim, and K.-C. Ko, “Considerations on the DBD power supply for surface change of ozone reactor,” in IEEE Power Modulator and High Voltage Conference (IEEE, 2010), pp. 679685.
W. Liu, Y. Wang, H. Zhang, Y. Pan, and L. Dong, “A novel dielectric barrier discharge system for generating stable patterns in wide range,” Rev. Sci. Instrum. 87, 056101 (2016).
A. V. Pipa, R. Brandenburg, and T. Hoder, “The simplest equivalent circuit of a pulsed dielectric barrier discharge and the determination of the gas gap charge transfer,” Rev. Sci. Instrum. 83(11), 115112 (2012).
M. Babij, Z. W. Kowalski, K. Nitsch, J. Silberring, and T. Gotszalk, “Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer,” Rev. Sci. Instrum. 85(5), 054703 (2014).
C. Yong-Nong and K. Chih-Ming, “Design of plasma generator driven by high-frequency high-voltage power supply,” J. Appl. Res. Technol. 11, 225234 (2013).
L. M. Redondo, J. Fernando, and E. Margato, “Analysis of modular generator for high voltage, high frequency pulsed applications, using low voltage semiconductors (<1 kV) and series connected step-up (1:10) transformers,” Rev. Sci. Instrum. 78, 034702 (2007).
L. M. Redondo, N. Pinhão, E. Margato, and J. Fernando Silva, “Progress on high-voltage pulse generators, using low voltage semiconductors (<1 kV) designed for Plasma Immersion Ion Implantation (PIII),” Surf. Coat. Technol. 156(1-3), 6165 (2002).
S. Kumar Sharma and A. Shyam, “Development of compact rapid charging power supply for capacitive energy storage in pulsed power drivers,” Rev. Sci. Instrum. 86(2), 023503 (2015).
H. R. Hafezi, S. J. Mousavi, M. Barati, and M. H. Rahdan, “Design and construction of 30 kV capacitor charger using of series resonant converter,” in Proceedings of 16th International Symposium on High Current Electronics Tomsk (Institute of High Current Electronics, 2010), pp. 296299.
J. S. Oh, S. D. Jang, Y. G. Son, M. H. Cho, and W. Namkung, “Development of an inverter charging supply to a pulse modulator,” in Proceedings of LINAC 2002 (Pohang Accelerator Laboratory, 2002), pp. 205207.
G. Lan, A. Larsson, V. Cooray, and V. Scuka, “Simulation of streamer discharges as finitely description streamer length,” IEEE Trans. Dielectr. Electr. Insul. 6, 3542 (1999).
B. G. Rodriguez-Mendez, R. López-Callejas, R. Peña-Eguiluz, A. Mercado-Cabrera, R. Valencia-Alvarado, S. R. Barocio, A. de la Piedad-Beneitez, J. S. Benitez-Red, and J. O. Pacheco-Sotelo, “PDBD with continuous liquids flows in a discharge reactor,” IEEE Trans. Plasma Sci. 36, 185191 (2008).

Data & Media loading...


Article metrics loading...



The design, construction, and testing of high frequency, high voltage pulse power supply are reported. The purpose of the power supply is to generate dielectric barrier discharges for industrial applications. The power supply is compact and has the advantage of low cost, over current protection, and convenient control for voltage and frequency selection. The power supply can generate high voltage pulses of up to 45 kV at the repetitive frequency range of 1 kHz–50 kHz with 1.2 kW input power. The output current of the power supply is limited to 500 mA. The pulse rise time and fall time are less than 2 s and the pulse width is 2 s. The power supply is short circuit proof and can withstand variable plasma load conditions. The power supply mainly consists of a half bridge series resonant converter to charge an intermediate capacitor, which discharges through a step-up transformer at high frequency to generate high voltage pulses. Semiconductor switches and amorphous cores are used for power modulation at higher frequencies. The power supply is tested with quartz tube dielectric barrier discharge load and worked stably. The design details and the performance of the power supply on no load and dielectric barrier discharge load are presented.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd