Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/87/11/10.1063/1.4960757
1.
R. G. Evans et al., Appl. Phys. Lett. 86, 191505 (2005).
http://dx.doi.org/10.1063/1.1920422
2.
HORIBA Scientific, Edison, NJ 08820–3097.
3.
National Aperture, Inc., Salem, NH 03079.
4.
FRED, Photon Engineering, LLC, Tucson, AZ 85711.
5.
V. Bagnoud, I. A. Begishev, M. J. Guardalben, J. Puth, and J. D. Zuegel, Opt. Lett. 30, 1843 (2005).
http://dx.doi.org/10.1364/OL.30.001843
6.
C. Dorrer, I. A. Begishev, A. V. Okishev, and J. D. Zuegel, Opt. Lett. 32, 2143 (2007).
http://dx.doi.org/10.1364/OL.32.002143
7.
I. A. Begishev, C. R. Stillman, S. T. Ivancic, S.-W. Bahk, R. Cuffney, C. Mileham, P. M. Nilson, D. H. Froula, J. D. Zuegel, and J. Bromage, “Efficient second-harmonic generation of large-aperture multi-terawatt hybrid Nd:laser subpicosecond pulses for laser–matter interactions,” Appl. Phys. (unpublished).
8.
See http://www.nist.gov/pml/data/asd.cfm for NIST Atomic Spectra Database, NIST Standard Reference Database #78, Version 5, 2016.
9.
J. J. MacFarlane, I. E. Golovkin, P. Wang, P. R. Woodruff, and N. A. Pereyra, High Energy Density Phys. 3, 181 (2007).
http://dx.doi.org/10.1016/j.hedp.2007.02.016
10.
J. Delettrez, R. Epstein, M. C. Richardson, P. A. Jaanimagi, and B. L. Henke, Phys. Rev. A 36, 3926 (1987).
http://dx.doi.org/10.1103/PhysRevA.36.3926
11.
T. Ma et al., Rev. Sci. Instrum. 79, 10E312 (2008).
http://dx.doi.org/10.1063/1.2965260
12.
U. Zastrau et al., Phys. Rev. E 78, 066406 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.066406
13.
R. Florido, R. C. Mancini, T. Nagayama, R. Tommasini, J. A. Delettrez, S. P. Regan, V. A. Smalyuk, R. Rodríguez, and J. M. Gil, High Energy Density Phys. 6, 70 (2010).
http://dx.doi.org/10.1016/j.hedp.2009.06.011
14.
L. Li, J. Chandezon, G. Granet, and J.-P. Plumey, Appl. Opt. 38, 304 (1999).
http://dx.doi.org/10.1364/AO.38.000304
http://aip.metastore.ingenta.com/content/aip/journal/rsi/87/11/10.1063/1.4960757
Loading
/content/aip/journal/rsi/87/11/10.1063/1.4960757
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/87/11/10.1063/1.4960757
2016-08-30
2016-09-25

Abstract

An ultrafast streaked extreme-ultraviolet (XUV) spectrometer (5–20 nm) was developed to measure the temperature dynamics in rapidly heated samples. Rapid heating makes it possible to create exotic states of matter that can be probed during their inertial confinement time—tens of picoseconds in the case of micron-sized targets. In contrast to other forms of pyrometry, where the temperature is inferred from bulk x-ray emission, XUV emission is restricted to the sample surface, allowing for a temperature measurement at the material–vacuum interface. The surface-temperature measurement constrains models for the release of high-energy-density material. Coupling the XUV spectrometer to an ultrafast (<2-ps) streak camera provided picosecond-time scale evolution of the surface-layer emission. Two high-throughput XUV spectrometers were designed to simultaneously measure the time-resolved and absolute XUV emission.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/87/11/1.4960757.html;jsessionid=rkN0TYazBaBBjY5WOW8_J0K-.x-aip-live-03?itemId=/content/aip/journal/rsi/87/11/10.1063/1.4960757&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/87/11/10.1063/1.4960757&pageURL=http://scitation.aip.org/content/aip/journal/rsi/87/11/10.1063/1.4960757'
Right1,Right2,Right3,