Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
J. A. Oertel, R. Aragonez, T. Archuleta, C. Barnes, L. Casper, V. Fatherley, T. Heinrichs, R. King, D. Landers, and F. Lopez, Rev. Sci. Instrum. 77, 10E308 (2006).
D. R. Hargrove, J. P. Holder, N. Izumi, L. R. Benedetti, G. Stone, J. Kimbrough, F. Allen, P. M. Bell, S. Glenn, and R. Petre, Proc. SPIE 9211, 92110D (2014).
L. R. Benedetti, J. P. Holder, M. Perkins, C. G. Brown, C. S. Anderson, F. V. Allen, R. B. Petre, D. Hargrove, S. M. Glenn, and N. Simanovskaia, Rev. Sci. Instrum. 87, 023511 (2016).
L. R. Benedetti, P. M. Bell, D. K. Bradley, C. G. Brown, S. M. Glenn, R. Heeter, J. P. Holder, N. Izumi, S. F. Khan, and G. Lacaille, Rev. Sci. Instrum. 83, 10E135 (2012).
S. F. Khan, L. R. Benedetti, D. R. Hargrove, S. M. Glenn, N. Simanovskaia, J. P. Holder, M. A. Barrios, D. Hahn, S. R. Nagel, and P. M. Bell, Rev. Sci. Instrum. 83, 10E118 (2012).
S. F. Khan, P. M. Bell, D. K. Bradley, S. R. Burns, J. R. Celeste, L. S. Dauffy, M. J. Eckart, M. A. Gerhard, C. Hagmann, and D. I. Headley, Proc. SPIE 8505, 850505 (2012).
E. L. Dewald, K. M. Campbell, R. E. Turner, J. P. Holder, O. L. Landen, S. H. Glenzer, R. L. Kauffman, L. J. Suter, M. Landon, and M. Rhodes, Rev. Sci. Instrum. 75, 3759 (2004).
R. Rosch, C. Trosseille, T. Caillaud, V. Allouche, J. L. Bourgade, M. Briat, P. Brunel, M. Burillo, A. Casner, S. Depierreux, D. Gontier, J. P. Jadaud, J. P. Le Breton, P. Llavador, B. Loupias, J. L. Miquel, G. Oudot, S. Perez, J. Raimbourg, A. Rousseau, C. Rousseaux, C. Rubbelynck, P. Stemmler, P. Troussel, J. L. Ulmer, R. Wrobel, P. Beauvais, M. Pallet, and V. Prevot, Rev. Sci. Instrum. 87, 033706 (2016).
C. Trosseille, D. Aubert, L. Auger, S. Bazzoli, T. Beck, P. Brunel, M. Burillo, C. Chollet, J. Gazave, S. Jasmin, P. Maruenda, I. Moreau, G. Oudot, J. Raimbourg, G. Soullié, P. Stemmler, and C. Zuber, Rev. Sci. Instrum. 85, 11D620 (2014).
O. L. Landen, P. M. Bell, J. A. Oertel, J. J. Satariano, and D. K. Bradley, Proc. SPIE 2002, 213 (1993).

Data & Media loading...


Article metrics loading...



Gain can vary across the active area of an x-ray framing camera by a factor of 4 (or more!) due to the voltage loss and dispersion associated with pulse transmission in a microstripline-coated microchannel plate. In order to make quantitative measurements, it is consequently important to measure the gain variation (“flat field”). Moreover, because of electromagnetic cross talk, gain variation depends on specific operational parameters, and ideally a flat field would be obtained at all operating conditions. As part of a collaboration between Lawrence Livermore National Laboratory’s National Ignition Facility and the Commissariat à l’Énergie Atomique, we have been able to evaluate the consistency of three different methods of measuring x-ray flat fields. By applying all three methods to a single camera, we are able to isolate performance from method. Here we report the consistency of the methods and discuss systematic issues with the implementation and analysis of each.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd