Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/87/2/10.1063/1.4941068
1.
1.R. Jones, P. Haufe, E. Sells, P. Iravani, V. Olliver, C. Palmer, and A. Bowyer, Robotica 29, 177 (2011).
http://dx.doi.org/10.1017/S026357471000069X
2.
2.P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Tomancak, Nat. Methods 10, 598 (2013).
http://dx.doi.org/10.1038/nmeth.2507
3.
3.J. M. Pearce, Open-Source Lab (Elsevier, 2014), pp. 1335.
4.
4.D. C. Ince, L. Hatton, and J. Graham-Cumming, Nature 482, 485 (2012).
http://dx.doi.org/10.1038/nature10836
5.
5.A. Prlić and J. B. Procter, PLoS Comput. Biol. 8, e1002802 (2012).
http://dx.doi.org/10.1371/journal.pcbi.1002802
6.
6.See http://openlabtools.eng.cam.ac.uk/ for OpenLabTools.
7.
7.See http://www.openscad.org/for OpenSCAD: The Programmer’s Solid 3D CAD Modeller; See http://www.cgal.org/for CGAL, Computational Geometry Algorithms Library; See http://www.slic3r.org/ for Slic3r.
8.
8.D. N. Breslauer, R. N. Maamari, N. Switz, W. Lam, and D. Fletcher, PLoS One 4, e6320 (2009);
http://dx.doi.org/10.1371/journal.pone.0006320
8.J. S. Cybulski, J. Clements, and M. Prakash, PLoS One 9, e98781 (2014);
http://dx.doi.org/10.1371/journal.pone.0098781
8.I. I. Bogoch, J. R. Andrews, B. Speich, J. Utzinger, S. M. Ame, S. M. Ali, and J. Keiser, Am. J. Trop. Med. Hyg. 88, 626 (2013);
http://dx.doi.org/10.4269/ajtmh.12-0742
8.A. Tapley, N. Switz, C. Reber, J. L. Davis, C. Miller, J. B. Matovu, W. Worodria, L. Huang, D. A. Fletcher, and A. Cattamanchi, J. Clin. Microbiol. 51, 1774 (2013);
http://dx.doi.org/10.1128/JCM.03432-12
8.W. M. Lee, A. Upadhya, P. J. Reece, and T. G. Phan, Biomed. Opt. Express 5, 1626 (2014).
http://dx.doi.org/10.1364/BOE.5.001626
9.
9.See http://www.raspberrypi.org/ for Raspberry Pi.
10.
10.M. D. Symes, P. J. Kitson, J. Yan, C. J. Richmond, G. J. T. Cooper, R. W. Bowman, T. Vilbrandt, and L. Cronin, Nat. Chem. 4, 349 (2012).
http://dx.doi.org/10.1038/nchem.1313
11.
11.C. Zhang, N. C. Anzalone, R. P. Faria, and J. M. Pearce, PLoS One 8, e59840 (2013).
http://dx.doi.org/10.1371/journal.pone.0059840
12.
12.V. Geertsen, E. Barruet, and O. Taché, J. Anal. At. Spectrom. 30, 1369 (2015).
http://dx.doi.org/10.1039/C5JA00045A
13.
13.J. M. Paros and L. Weisbord, Mach. Des. 37, 151 (1965).
14.
14.B. P. Trease, Y.-M. Moon, and S. Kota, J. Mech. Des. 127, 788 (2005).
http://dx.doi.org/10.1115/1.1900149
15.
15.N. Lobontiu, J. S. N. Paine, E. Garcia, and M. Goldfarb, J. Mech. Des. 123, 346 (2001).
http://dx.doi.org/10.1115/1.1372190
16.
16.B. Tymrak, M. Kreiger, and J. Pearce, Mater. Des. 58, 242 (2014).
http://dx.doi.org/10.1016/j.matdes.2014.02.038
17.
17.P. Gao, S.-M. Swei, and Z. Yuan, Nanotechnology 10, 394 (1999).
http://dx.doi.org/10.1088/0957-4484/10/4/306
18.
18.See http://www.arduino.cc/ for Arduino.
19.
19.N. Lobontiu and E. Garcia, Comput. Struct. 81, 1329 (2003).
http://dx.doi.org/10.1016/S0045-7949(03)00056-7
20.
20.C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nat. Methods 9, 671 (2012).
http://dx.doi.org/10.1038/nmeth.2089
21.
21.P. Thévenaz, U. E. Ruttimann, and M. Unser, IEEE Trans. Image Process. 7, 27 (1998).
http://dx.doi.org/10.1109/83.650848
22.
22.G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, Opt. Express 16, 14561 (2008);
http://dx.doi.org/10.1364/OE.16.014561
22.F. Czerwinski, A. C. Richardson, and L. B. Oddershede, Opt. Express 17, 13255 (2009).
http://dx.doi.org/10.1364/OE.17.013255
23.
23.R. J. Kinch, “Raspberry Pi camera module stock lens characteristics,” http://www.truetex.com/raspberrypi.
24.
24.Y.-L. Sung, J. Jeang, C.-H. Lee, and W.-C. Shih, J. Biomed. Opt. 20, 47005 (2015).
http://dx.doi.org/10.1117/1.JBO.20.4.047005
25.
25.L. Tian and L. Waller, Optica 2, 104 (2015).
http://dx.doi.org/10.1364/OPTICA.2.000104
26.
26.S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, Proc. Natl. Acad. Sci. U. S. A. 109, 15712 (2012).
http://dx.doi.org/10.1073/pnas.1210105109
27.
http://aip.metastore.ingenta.com/content/aip/journal/rsi/87/2/10.1063/1.4941068
Loading
/content/aip/journal/rsi/87/2/10.1063/1.4941068
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/87/2/10.1063/1.4941068
2016-02-08
2016-12-06

Abstract

Open source hardware has the potential to revolutionise the way we build scientific instruments; with the advent of readily available 3D printers, mechanical designs can now be shared, improved, and replicated faster and more easily than ever before. However, printed parts are typically plastic and often perform poorly compared to traditionally machined mechanisms. We have overcome many of the limitations of 3D printed mechanisms by exploiting the compliance of the plastic to produce a monolithic 3D printed flexure translation stage, capable of sub-micron-scale motion over a range of 8 × 8 × 4 mm. This requires minimal post-print clean-up and can be automated with readily available stepper motors. The resulting plastic composite structure is very stiff and exhibits remarkably low drift, moving less than 20 m over the course of a week, without temperature stabilisation. This enables us to construct a miniature microscope with excellent mechanical stability, perfect for time-lapse measurements in an incubator or fume hood. The ease of manufacture lends itself to use in containment facilities where disposability is advantageous and to experiments requiring many microscopes in parallel. High performance mechanisms based on printed flexures need not be limited to microscopy, and we anticipate their use in other devices both within the laboratory and beyond.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/87/2/1.4941068.html;jsessionid=BjvL4sT37eaV7qsqJrsgijbB.x-aip-live-03?itemId=/content/aip/journal/rsi/87/2/10.1063/1.4941068&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/87/2/10.1063/1.4941068&pageURL=http://scitation.aip.org/content/aip/journal/rsi/87/2/10.1063/1.4941068'
Right1,Right2,Right3,