Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. Jones, P. Haufe, E. Sells, P. Iravani, V. Olliver, C. Palmer, and A. Bowyer, Robotica 29, 177 (2011).
2.P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Tomancak, Nat. Methods 10, 598 (2013).
3.J. M. Pearce, Open-Source Lab (Elsevier, 2014), pp. 1335.
4.D. C. Ince, L. Hatton, and J. Graham-Cumming, Nature 482, 485 (2012).
5.A. Prlić and J. B. Procter, PLoS Comput. Biol. 8, e1002802 (2012).
6.See for OpenLabTools.
7.See OpenSCAD: The Programmer’s Solid 3D CAD Modeller; See CGAL, Computational Geometry Algorithms Library; See for Slic3r.
8.D. N. Breslauer, R. N. Maamari, N. Switz, W. Lam, and D. Fletcher, PLoS One 4, e6320 (2009);
8.J. S. Cybulski, J. Clements, and M. Prakash, PLoS One 9, e98781 (2014);
8.I. I. Bogoch, J. R. Andrews, B. Speich, J. Utzinger, S. M. Ame, S. M. Ali, and J. Keiser, Am. J. Trop. Med. Hyg. 88, 626 (2013);
8.A. Tapley, N. Switz, C. Reber, J. L. Davis, C. Miller, J. B. Matovu, W. Worodria, L. Huang, D. A. Fletcher, and A. Cattamanchi, J. Clin. Microbiol. 51, 1774 (2013);
8.W. M. Lee, A. Upadhya, P. J. Reece, and T. G. Phan, Biomed. Opt. Express 5, 1626 (2014).
9.See for Raspberry Pi.
10.M. D. Symes, P. J. Kitson, J. Yan, C. J. Richmond, G. J. T. Cooper, R. W. Bowman, T. Vilbrandt, and L. Cronin, Nat. Chem. 4, 349 (2012).
11.C. Zhang, N. C. Anzalone, R. P. Faria, and J. M. Pearce, PLoS One 8, e59840 (2013).
12.V. Geertsen, E. Barruet, and O. Taché, J. Anal. At. Spectrom. 30, 1369 (2015).
13.J. M. Paros and L. Weisbord, Mach. Des. 37, 151 (1965).
14.B. P. Trease, Y.-M. Moon, and S. Kota, J. Mech. Des. 127, 788 (2005).
15.N. Lobontiu, J. S. N. Paine, E. Garcia, and M. Goldfarb, J. Mech. Des. 123, 346 (2001).
16.B. Tymrak, M. Kreiger, and J. Pearce, Mater. Des. 58, 242 (2014).
17.P. Gao, S.-M. Swei, and Z. Yuan, Nanotechnology 10, 394 (1999).
18.See for Arduino.
19.N. Lobontiu and E. Garcia, Comput. Struct. 81, 1329 (2003).
20.C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nat. Methods 9, 671 (2012).
21.P. Thévenaz, U. E. Ruttimann, and M. Unser, IEEE Trans. Image Process. 7, 27 (1998).
22.G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, Opt. Express 16, 14561 (2008);
22.F. Czerwinski, A. C. Richardson, and L. B. Oddershede, Opt. Express 17, 13255 (2009).
23.R. J. Kinch, “Raspberry Pi camera module stock lens characteristics,”
24.Y.-L. Sung, J. Jeang, C.-H. Lee, and W.-C. Shih, J. Biomed. Opt. 20, 47005 (2015).
25.L. Tian and L. Waller, Optica 2, 104 (2015).
26.S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, Proc. Natl. Acad. Sci. U. S. A. 109, 15712 (2012).

Data & Media loading...


Article metrics loading...



Open source hardware has the potential to revolutionise the way we build scientific instruments; with the advent of readily available 3D printers, mechanical designs can now be shared, improved, and replicated faster and more easily than ever before. However, printed parts are typically plastic and often perform poorly compared to traditionally machined mechanisms. We have overcome many of the limitations of 3D printed mechanisms by exploiting the compliance of the plastic to produce a monolithic 3D printed flexure translation stage, capable of sub-micron-scale motion over a range of 8 × 8 × 4 mm. This requires minimal post-print clean-up and can be automated with readily available stepper motors. The resulting plastic composite structure is very stiff and exhibits remarkably low drift, moving less than 20 m over the course of a week, without temperature stabilisation. This enables us to construct a miniature microscope with excellent mechanical stability, perfect for time-lapse measurements in an incubator or fume hood. The ease of manufacture lends itself to use in containment facilities where disposability is advantageous and to experiments requiring many microscopes in parallel. High performance mechanisms based on printed flexures need not be limited to microscopy, and we anticipate their use in other devices both within the laboratory and beyond.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd