Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/87/3/10.1063/1.4943304
1.
1.S. H. Nam, H.-S. Kang, I. S. Ko, and M. Cho, “Upgrade of Pohang Light Source (PLS-II) and challenge to PAL-XFEL,” Synchrotron Radiat. News 26, 2431 (2013).
http://dx.doi.org/10.1080/08940886.2013.812448
2.
2.D. A. Reis, M. F. DeCamp, P. H. Bucksbaum, R. Clarke, E. Dufresne, M. Hertlein, R. Merlin, R. Falcone, H. Kapteyn, M. M. Murnane, J. Larsson, T. Missalla, and J. S. Wark, “Probing impulsive strain propagation with x-ray pulses,” Phys. Rev. Lett. 86, 30723075 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3072
3.
3.B. Adams, M. DeCamp, E. Dufresne, and D. Reis, “Picosecond laser-pump, x-ray probe spectroscopy of GaAs,” Rev. Sci. Instrum. 73, 4150 (2002).
http://dx.doi.org/10.1063/1.1516849
4.
4.M. Wulff, A. Plech, L. Eybert, R. Randler, F. Schotte, and P. Anfinrud, “The realization of sub-nanosecond pump and probe experiments at the ESRF. European Synchrotron Radiation Facility,” Faraday Discuss. 122, 1326 (2003).
http://dx.doi.org/10.1039/b202740m
5.
5.M. F. Decamp, D. A. Reis, D. M. Fritz, P. H. Bucksbaum, E. M. Dufresne, and R. Clark, “X-ray synchrotron studies of ultrafast crystalline dynamics,” J. Synchrotron Radiat. 12, 177192 (2005).
http://dx.doi.org/10.1107/S0909049504033679
6.
6.S. Lee, A. Cavalleri, D. Fritz, M. Swan, R. Hegde, M. Reason, R. Goldman, and D. Reis, “Generation and propagation of a picosecond acoustic pulse at a buried interface: Time-resolved x-ray diffraction measurements,” Phys. Rev. Lett. 95, 246104 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.246104
7.
7.M. Highland, B. Dundrum, Y. K. Koh, R. Averback, D. G. Cahill, V. Elarde, J. Coleman, D. Walko, and E. Landahl, “Ballistic-phonon heat conduction at the nanoscale as revealed by time-resolved x-ray diffraction and time-domain thermoreflectance,” Phys. Rev. B 76, 075337 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.075337
8.
8.A. Grigoriev, D.-H. Do, P. G. Evans, B. Adams, E. Landahl, and E. M. Dufresne, “Synchronizing fast electrically driven phenomena with synchrotron x-ray probes,” Rev. Sci. Instrum. 78, 023105 (2007).
http://dx.doi.org/10.1063/1.2668989
9.
9.M. Trigo, M. Sheu, D. Arms, J. Chen, S. Ghlmire, R. Goldman, E. Landahl, R. Merlin, E. Peterson, M. Reason, and D. Reis, “Probing unfolded acoustic phonons with x-rays,” Phys. Rev. B 101, 025505 (2008).
http://dx.doi.org/10.1103/physrevlett.101.025505
10.
10.H. S. Cho et al., “Protein structural dynamics in solution unveiled via 100-ps time-resolved x-ray scattering,” Proc. Natl. Acad. Sci. U. S. A. 107, 72817286 (2010).
http://dx.doi.org/10.1073/pnas.1002951107
11.
11.A. M. March, A. Stickrath, G. Doumy, E. P. Kanter, B. Krässig, S. H. Southworth, K. Attenkofer, and C. A. Kurtz, “Development of high-repetition-rate laser pump/x-ray probe methodologies for synchrotron facilities,” Rev. Sci. Instrum. 82, 073110 (2011).
http://dx.doi.org/10.1063/1.3615245
12.
12.E. M. Dufresne et al., “A technique for high-frequency laser-pump x-ray probe experiments at the APS,” Nucl. Instrum. Methods Phys. Res., Sect. A 649, 191193 (2011).
http://dx.doi.org/10.1016/j.nima.2011.01.050
13.
13.L. Young et al., “X-ray microprobe of orbital alignment in strong-field ionized atoms,” Phys. Rev. Lett. 97, 083601 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.083601
14.
14.C. Höhr, E. Peterson, N. Rohringer, J. Rudati, D. Arms, E. Dufresne, R. Dunford, D. Ederer, E. Kanter, B. Krässig, E. Landahl, R. Santra, S. Southworth, and L. Young, “Alignment dynamics in a laser-produced plasma,” Rev. Sci. Insturm. 75, 011403 (2007).
http://dx.doi.org/10.1103/physreva.75.011403
15.
15.J.-H. Han, H.-S. Kang, and I. S. Ko, “Status of the PAL-XFEL project,” in Proceedings of IPAC2012 (IEEE, New Orleans, USA, 2010), pp. 17351737.
16.
16.W. Jo, S. Lee, I. Eom, and E. C. Landahl, “Synchronizing femtosecond laser with x-ray synchrotron operating at arbitrarily different frequency,” Rev. Sci. Instrum. 85, 125112 (2014).
http://dx.doi.org/10.1063/1.4903967
17.
17.G. J. Williams, M. A. Watson, D. A. Arms, T. M. Mooney, D. A. Walko, and E. C. Landahl, “Epics oscilloscope for time-resolved data acquisition,” Nucl. Instrum. Methods Phys. Res., Sect. A 649, 8486 (2011).
http://dx.doi.org/10.1016/j.nima.2010.12.243
18.
18.See http://www.esrf.eu/instrumentation/software/data-analysis/xop2.4 for information about using XOP software.
19.
19.M. F. Decamp et al., “Transient strain driven by a dense electron-hole plasma,” Phys. Rev. Lett. 91, 165502 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.165502
20.
20.S. Lee, G. J. Williams, M. I. Campana, D. A. Walko, and E. C. Landahl, “Picosecond x-ray strain rosette reveals direct laser excitation of coherent transverse acoustic phonons,” Sci. Rep. 6, 19140 (2016).
http://dx.doi.org/10.1038/srep19140
21.
21.C. R. Wie, T. A. Tombrello, and T. Vreeland, Jr., “Dynamical x-ray diffraction from nonuniform crystalline films: Application to x-ray rocking curve analysis,” J. Appl. Phys. 59, 3743 (1986).
http://dx.doi.org/10.1063/1.336759
22.
22.G. Busch and E. Steigmeier, “Thermal conductivity, electrical conductivity, hall effect, and thermoelectric power of InSb,” Helv. Phys. Acta 34, 128 (1961).
http://aip.metastore.ingenta.com/content/aip/journal/rsi/87/3/10.1063/1.4943304
Loading
/content/aip/journal/rsi/87/3/10.1063/1.4943304
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/87/3/10.1063/1.4943304
2016-03-08
2016-09-30

Abstract

We report on the development of a new experimental instrument for time-resolved x-ray scattering (TRXS) at the Pohang Light Source (PLS-II). It operates with a photon energy ranging from 5 to 18 keV. It is equipped with an amplified Ti:sappahire femtosecond laser, optical diagnostics, and laser beam delivery for pump-probe experiments. A high-speed single-element detector and high trigger-rate oscilloscope are used for rapid data acquisition. While this instrument is capable of measuring sub-nanosecond dynamics using standard laser pump/x-ray probe techniques, it also takes advantage of the dense 500 MHz standard fill pattern in the PLS-II storage ring to efficiently record nano-to-micro-second dynamics simultaneously. We demonstrate this capability by measuring both the (fast) impulsive strain and (slower) thermal recovery dynamics of a crystalline InSb sample following intense ultrafast laser excitation. Exploiting the full repetition rate of the storage ring results in a significant improvement in data collection rates compared to conventional bunch-tagging methods.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/87/3/1.4943304.html;jsessionid=UtNWr51UWISKw4xJstLMP7yJ.x-aip-live-02?itemId=/content/aip/journal/rsi/87/3/10.1063/1.4943304&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/87/3/10.1063/1.4943304&pageURL=http://scitation.aip.org/content/aip/journal/rsi/87/3/10.1063/1.4943304'
Right1,Right2,Right3,