Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 3441 (1995).
2.A. Bellincontro, A. Taticchi, M. Servili, S. Esposto, D. Farinelli, and F. Mencarelli, “Feasible application of a portable NIR-AOTF tool for on-field prediction of phenolic compounds during the ripening of olives for oil production,” J. Agric. Food Chem. 60, 26652673 (2012).
3.I. Bargigia, A. Nevin, A. Farina, A. Pifferi, C. D’Andrea, M. Karlsson, P. Lundin, G. Somesfalean, and S. Svanberg, “Diffuse optical techniques applied to wood characterisation,” J. Near Infrared Spectrosc. 21, 259268 (2013).
4.T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
5.P. Taroni, G. Quarto, A. Pifferi, F. Ieva, A. M. Paganoni, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Optical identification of subjects at high risk for developing breast cancer,” J. Biomed. Opt. 18, 060507 (2013).
6.D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 24292449 (2005).
7.A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: A step toward the diagnosis of bone pathologies,” J. Biomed. Opt. 9, 474480 (2004).
8.L. Enfield, G. Cantanhede, M. Douek, V. Ramalingam, A. Purushotham, J. Hebden, and A. Gibson, “Monitoring the response to neoadjuvant hormone therapy for locally advanced breast cancer using three-dimensional time-resolved optical mammography,” J. Biomed. Opt. 18, 56012 (2013).
9.M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63, 921935 (2012).
10.D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: A systematic review,” Breast Cancer Res. Treat. 108, 922 (2008).
11.D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: Introduction for the special issue,” Neuroimage 85(Part 1), 15 (2014).
12.M. A. Khalil, H. K. Kim, I.-K. Kim, M. Flexman, R. Dayal, G. Shrikhande, and A. H. Hielscher, “Dynamic diffuse optical tomography imaging of peripheral arterial disease,” Biomed. Opt. Express 3, 22882298 (2012).
13.O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: Technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt. 15, 6170861710 (2010).
14.I. A. Nakhaeva, O. A. Zyuryukina, M. R. Mohammed, and Y. P. Sinichkin, “The effect of external mechanical compression on in vivo water content in human skin,” Opt. Spectrosc. 118, 834840 (2015).
15.I. Sase, A. Takatsuki, J. Seki, T. Yanagida, and A. Seiyama, “Noncontact backscatter-mode near-infrared time-resolved imaging system: Preliminary study for functional brain mapping,” J. Biomed. Opt. 11, 054006 (2006).
16.T. Funane and A. Suzuki, “Noncontact brain activity measurement system based on near-infrared,” Appl. Phys. Lett. 96, 13 (2010).
17.D. Contini, L. Zucchelli, L. Spinelli, M. Caffini, R. Re, A. Pifferi, R. Cubeddu, and A. Torricelli, “Review: Brain and muscle near infrared spectroscopy/imaging techniques,” J. Near Infrared Spectrosc. 20, 15 (2012).
18.A. Puszka, L. Di Sieno, A. Dalla Mora, A. Pifferi, D. Contini, A. Planat-Chrétien, A. Koenig, G. Boso, A. Tosi, L. Hervé, and J.-M. Dinten, “Spatial resolution in depth for time-resolved diffuse optical tomography using short source-detector separations,” Biomed. Opt. Express 6, 110 (2015).
19.A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100, 138101 (2008).
20.G. Boso, A. Dalla Mora, A. Della Frera, and A. Tosi, “Fast-gating of single-photon avalanche diodes with 200 ps transitions and 30 ps timing jitter,” Sens. Actuators, A 191, 6167 (2013).
21.A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 16, 10231030 (2010).
22.M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A. Dalla Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation,” Opt. Express 20, 283290 (2012).
23.M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald, “Non-contact in vivo diffuse optical imaging using a time-gated scanning system,” Biomed. Opt. Express 4, 22572268 (2013).
24.H. Wabnitz, M. Mazurenka, L. Di Sieno, G. Boso, W. Becker, K. Fuchs, D. Contini, A. Dalla Mora, A. Tosi, R. Macdonald, and A. Pifferi, “Time-domain diffuse optical imaging of tissue by non-contact scanning,” in Advanced Time-Correlated Single Photon Counting Applications, Springer I, Springer Series in Chemical Physics, edited by W. Becker (Springer International Publishing, 2015), Vol.111, pp. 561585.
25.V. Sankaran, M. J. Everett, D. J. Maitland, and J. T. Walsh, “Comparison of polarized-light propagation in biological tissue and phantoms,” Opt. Lett. 24, 10441046 (1999).
26.A. Dalla Mora, A. Tosi, D. Contini, L. Di Sieno, G. Boso, F. Villa, and A. Pifferi, “Memory effect in silicon time-gated single-photon avalanche diodes,” J. Appl. Phys. 117, 114501 (2015).
27.W. Becker, The Bh TCSPC Handbook, 6th ed. (Becker & Hickl, 2014).
28.W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer Science & Business Media, 2005), Vol. 81.
29.H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers. Part 1: Basic instrumental performance protocol,” J. Biomed. Opt. 19, 86010 (2014).
30.H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers. Part 2: nEUROPt protocol,” J. Biomed. Opt. 19, 86012 (2014).
31.A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thin-junction silicon single-photon avalanche diode,” Appl. Phys. Lett. 100, 241111 (2012).
32.F. Martelli, A. Pifferi, D. Contini, L. Spinelli, A. Torricelli, H. Wabnitz, R. Macdonald, A. Sassaroli, and G. Zaccanti, “Phantoms for diffuse optical imaging based on totally absorbing objects. Part 1: Basic concepts,” J. Biomed. Opt. 18, 066014 (2013).
33.F. Martelli and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method,” Opt. Express 15, 486500 (2007).
34.R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16, 59075925 (2008).
35.L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express 15, 65896604 (2007).
36.L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5, 20372053 (2014).
37.F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald et al., “Phantoms for diffuse optical imaging based on totally absorbing objects. Part 2: Experimental implementation,” J. Biomed. Opt. 19, 76011 (2014).
38.D. Contini, A. Dalla Mora, L. Spinelli, A. Farina, A. Torricelli, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, G. Boso, F. Zappa, and A. Pifferi, “Effects of time-gated detection in diffuse optical imaging at short source-detector separation,” J. Phys. D: Appl. Phys. 48, 45401 (2015).
39.A. Tosi, A. Dalla Mora, and F. Zappa, “All-silicon 1.55 μm high-resolution photon counting and timing,” IEEE Photonics Technol. Lett. 20, 19561958 (2008).
40.D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express 14, 54185432 (2006).
41.D. Contini, L. Spinelli, M. Caffini, R. Cubeddu, and A. Torricelli, “A multichannel time-domain brain oximeter for clinical studies,” Proc. SPIE 7369, 73691D-173691D-6 (2009).
42.Hamamatsu Photonics K. K., “Photocathode technology,” /technology/innovation/photocathode/index.html.
43.A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: Improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95, 078101 (2005).
44.A. Dalla Mora, E. Martinenghi, D. Contini, A. Tosi, G. Boso, T. Durduran, S. Arridge, F. Martelli, A. Farina, A. Torricelli, and A. Pifferi, “Fast silicon photomultiplier improves signal harvesting and reduces complexity in time-domain diffuse optics,” Opt. Express 23, 1393713946 (2015).
45.E. Martinenghi, A. Dalla Mora, D. Contini, A. Farina, F. Villa, A. Torricelli, and A. Pifferi, “Spectrally resolved single-photon timing of silicon photomultipliers for time-domain diffuse spectroscopy,” IEEE Photonics J. 7, 6802512 (2015).
46.S.-O. Flyckt and C. Marmonier, Photomultiplier Tubes: Principles and Applications (Photonis, 2002).
47.A. Dalla Mora, D. Contini, S. Arridge, F. Martelli, A. Tosi, G. Boso, A. Farina, T. Durduran, E. Martinenghi, A. Torricelli, and A. Pifferi, “Towards next-generation time-domain diffuse optics for extreme depth penetration and sensitivity,” Biomed. Opt. Express 6, 17491760 (2015).

Data & Media loading...


Article metrics loading...



We present a system for non-contact time-resolved diffuse reflectance imaging, based on small source-detector distance and high dynamic range measurements utilizing a fast-gated single-photon avalanche diode. The system is suitable for imaging of diffusive media without any contact with the sample and with a spatial resolution of about 1 cm at 1 cm depth. In order to objectively assess its performances, we adopted two standardized protocols developed for time-domain brainimagers. The related tests included the recording of the instrument response function of the setup and the responsivity of its detectionsystem. Moreover, by using liquid turbid phantoms with absorbing inclusions, depth-dependent contrast and contrast-to-noise ratio as well as lateral spatial resolution were measured. To illustrate the potentialities of the novel approach, the characteristics of the non-contact system are discussed and compared to those of a fiber-based brainimager.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd