Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/87/4/10.1063/1.4942943
1.
H. Fellner-Feldegg, H. Siegbahn, L. Asplund, P. Kelfve, and K. Siegbahn, “ESCA applied to liquids IV. A wire system for ESCA measurements on liquids,” J. Electron Spectrosc. Relat. Phenom. 7, 421428 (1975).
http://dx.doi.org/10.1016/0368-2048(75)85006-7
2.
H. Siegbahn and K. Siegbahn, “ESCA applied to liquids,” J. Electron Spectrosc. Relat. Phenom. 2(3), 319325 (1973).
http://dx.doi.org/10.1016/0368-2048(73)80023-4
3.
H. Siegbahn, S. Svensson, and M. Lundholm, “A new method for ESCA studies of liquid-phase samples,” J. Electron Spectrosc. Relat. Phenom. 24, 205213 (1981).
http://dx.doi.org/10.1016/0368-2048(81)80007-2
4.
B. Winter, “Liquid microjet for photoelectron spectroscopy,” Nucl. Instrum. Methods Phys. Res., Sect. A 601(1-2), 139150 (2009).
http://dx.doi.org/10.1016/j.nima.2008.12.108
5.
D. E. Starr, Z. Liu, M. Havecker, A. Knop-Gericke, and H. Bluhm, “Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy,” Chem. Soc. Rev. 42(13), 58335857 (2013).
http://dx.doi.org/10.1039/c3cs60057b
6.
M. Salmeron and R. Schlogl, “Ambient pressure photoelectron spectroscopy: A new tool for surface science and nanotechnology,” Surf. Sci. Rep. 63(4), 169199 (2008).
http://dx.doi.org/10.1016/j.surfrep.2008.01.001
7.
D. Nordlund, M. Odelius, H. Bluhm, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Electronic structure effects in liquid water studied by photoelectron spectroscopy and density functional theory,” Chem. Phys. Lett. 460(1-3), 8692 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.04.096
8.
M. H. Cheng, K. M. Callahan, A. M. Margarella, D. J. Tobias, J. C. Hemminger, H. Bluhm, and M. J. Krisch, “Ambient pressure x-ray photoelectron spectroscopy and molecular dynamics simulation studies of liquid/vapor interfaces of aqueous NaCl, RbCl, and RbBr solutions,” J. Phys. Chem. C 116(7), 45454555 (2012).
http://dx.doi.org/10.1021/jp205500h
9.
F. Mangolini, J. Ahlund, G. E. Wabiszewski, V. P. Adiga, P. Egberts, F. Streller, K. Backlund, P. G. Karlsson, B. Wannberg, and R. W. Carpick, “Angle-resolved environmental x-ray photoelectron spectroscopy: A new laboratory setup for photoemission studies at pressures up to 0.4 Torr,” Rev. Sci. Instrum. 83(9), 093112 (2012).
http://dx.doi.org/10.1063/1.4754127
10.
M. A. Brown, A. B. Redondo, I. Jordan, N. Duyckaerts, M. T. Lee, M. Ammann, F. Nolting, A. Kleibert, T. Huthwelker, J. P. Machler, M. Birrer, J. Honegger, R. Wetter, H. J. Worner, and J. A. van Bokhoven, “A new endstation at the swiss light source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions,” Rev. Sci. Instrum. 84(7), 073904 (2013).
http://dx.doi.org/10.1063/1.4812786
11.
M. E. Grass, P. G. Karlsson, F. Aksoy, M. Lundqvist, B. Wannberg, B. S. Mun, Z. Hussain, and Z. Liu, “New ambient pressure photoemission endstation at advanced light source beamline 9.3.2,” Rev. Sci. Instrum. 81(5), 053106 (2010).
http://dx.doi.org/10.1063/1.3427218
12.
J. Schnadt, J. Knudsen, J. N. Andersen, H. Siegbahn, A. Pietzsch, F. Hennies, N. Johansson, N. Martensson, G. Ohrwall, S. Bahr, S. Mahl, and O. Schaff, “The new ambient-pressure X-ray photoelectron spectroscopy instrument at MAX-lab,” J. Synchrotron Radiat. 19, 701704 (2012).
http://dx.doi.org/10.1107/S0909049512032700
14.
S. Kaya, H. Ogasawara, L. A. Naslund, J. O. Forsell, H. S. Casalongue, D. J. Miller, and A. Nilsson, “Ambient-pressure photoelectron spectroscopy for heterogeneous catalysis and electrochemistry,” Catal. Today 205, 101105 (2013).
http://dx.doi.org/10.1016/j.cattod.2012.08.005
15.
E. F. Smith, I. J. Villar garcia, D. Briggs, and P. Licence, “Ionic liquids in vacuo; solution-phase X-ray photoelectron spectroscopy,” Chem. Commun. 2005(45), 56335635.
http://dx.doi.org/10.1039/b512311a
16.
J. M. Gottfried, F. Maier, J. Rossa, D. Gerhard, P. S. Schulz, P. Wasserscheid, and H.-P. Steinrück, “Surface studies on the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate using X-ray photoelectron spectroscopy (XPS),” Z. Phys. Chem. 220(10-11), 14391453 (2006).
http://dx.doi.org/10.1524/zpch.2006.220.10.1439
17.
F. Maier, J. M. Gottfried, J. Rossa, D. Gerhard, P. S. Schulz, W. Schwieger, P. Wasserscheid, and H.-P. Steinrück, “Surface enrichment and depletion effects of ions dissolved in an ionic liquid: An x-ray photoelectron spectroscopy study,” Angew. Chem., Int. Ed. 45(46), 77787780 (2006).
http://dx.doi.org/10.1002/anie.200602756
18.
S. Caporali, U. Bardi, and A. Lavacchi, “X-ray photoelectron spectroscopy and low energy ion scattering studies on 1-buthyl-3-methyl-imidazolium bis(trifluoromethane) sulfonimide,” J. Electron Spectrosc. Relat. Phenom. 151(1), 48 (2006).
http://dx.doi.org/10.1016/j.elspec.2005.09.010
19.
O. Höfft, S. Bahr, M. Himmerlich, S. Krischok, J. A. Schaefer, and V. Kempter, “Electronic structure of the surface of the ionic liquid [EMIM][Tf2N] studied by metastable impact electron spectroscopy (MIES), UPS, and XPS,” Langmuir 22(17), 71207123 (2006).
http://dx.doi.org/10.1021/la060943v
20.
S. Krischok, R. Ottking, W. J. D. Beenken, M. Himmerlich, P. Lorenz, O. Höfft, S. Bahr, V. Kempter, and J. A. Schaefer, “A comparative study on the electronic structure of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide RT-ionic liquid by electron spectroscopy and first principles calculations,” Z. Phys. Chem. 220(10-11), 14071416 (2006).
http://dx.doi.org/10.1524/zpch.2006.220.10.1407
21.
C. Kolbeck, M. Killian, F. Maier, N. Paape, P. Wasserscheid, and H.-P. Steinrück, “Surface characterization of functionalized imidazolium-based ionic liquids,” Langmuir 24(17), 95009507 (2008).
http://dx.doi.org/10.1021/la801261h
22.
A. Jablonski and C. J. Powell, “Information depth and the mean escape depth in Auger electron spectroscopy and X-ray photoelectron spectroscopy,” J. Vac. Sci. Technol., A 21(1), 274283 (2003).
http://dx.doi.org/10.1116/1.1538370
23.
K. R. J. Lovelock, I. J. Villar-Garcia, F. Maier, H.-P. Steinrück, and P. Licence, “Photoelectron spectroscopy of ionic liquid-based interfaces,” Chem. Rev. 110(9), 51585190 (2010).
http://dx.doi.org/10.1021/cr100114t
24.
F. Maier, T. Cremer, C. Kolbeck, K. R. J. Lovelock, N. Paape, P. S. Schulz, P. Wasserscheidc, and H.-P. Steinrück, “Insights into the surface composition and enrichment effects of ionic liquids and ionic liquid mixtures,” Phys. Chem. Chem. Phys. 12(8), 19051915 (2010).
http://dx.doi.org/10.1039/b920804f
25.
I. Niedermaier, M. Bahlmann, C. Papp, C. Kolbeck, W. Wei, S. K. Calderon, M. Grabau, P. S. Schulz, P. Wasserscheid, H.-P. Steinrück, and F. Maier, “Carbon dioxide capture by an amine functionalized ionic liquid: Fundamental differences of surface and bulk behavior,” J. Am. Chem. Soc. 136(1), 436441 (2014).
http://dx.doi.org/10.1021/ja410745a
26.
H.-P. Steinrück, “Surface science goes liquid !,” Surf. Sci. 604(5-6), 481484 (2010).
http://dx.doi.org/10.1016/j.susc.2009.12.033
27.
H.-P. Steinrück, “Recent developments in the study of ionic liquid interfaces using X-ray photoelectron spectroscopy and potential future directions,” Phys. Chem. Chem. Phys. 14(15), 50105029 (2012).
http://dx.doi.org/10.1039/c2cp24087d
28.
I. Niedermaier, N. Taccardi, P. Wasserscheid, F. Maier, and H.-P. Steinrück, “Probing a gas/liquid acid-base reaction by x-ray photoelectron spectroscopy,” Angew. Chem., Int. Ed. 52(34), 89048907 (2013).
http://dx.doi.org/10.1002/anie.201304115
29.
K. R. J. Lovelock, C. Kolbeck, T. Cremer, N. Paape, P. S. Schulz, P. Wasserscheid, F. Maier, and H.-P. Steinrück, “Influence of different substituents on the surface composition of ionic liquids studied using ARXPS,” J. Phys. Chem. B 113(9), 28542864 (2009).
http://dx.doi.org/10.1021/jp810637d
30.
C. Kolbeck, T. Cremer, K. R. J. Lovelock, N. Paape, P. S. Schulz, P. Wasserscheid, F. Maier, and H.-P. Steinrück, “Influence of different anions on the surface composition of ionic liquids studied using ARXPS,” J. Phys. Chem. B 113(25), 86828688 (2009).
http://dx.doi.org/10.1021/jp902978r
31.
C. S. Santos and S. Baldelli, “Alkyl chain interaction at the surface of room temperature ionic liquids: Systematic variation of alkyl chain length (R = C1-C4, C8) in both cation and anion of [RMIM][R-OSO3] by sum frequency generation and surface tension,” J. Phys. Chem. B 113(4), 923933 (2009).
http://dx.doi.org/10.1021/jp807924g
32.
Y. Jeon, J. Sung, W. Bu, D. Vaknin, Y. Ouchi, and D. Kim, “Interfacial restructuring of ionic liquids determined by sum-frequency generation spectroscopy and X-Ray reflectivity,” J. Phys. Chem. C 112(49), 1964919654 (2008).
http://dx.doi.org/10.1021/jp807873j
33.
T. Iwahashi, T. Nishi, H. Yamane, T. Miyamae, K. Kanai, K. Seki, D. Kim, and Y. Ouchi, “Surface structural study on ionic liquids using metastable atom electron spectroscopy,” J. Phys. Chem. C 113(44), 1923719243 (2009).
http://dx.doi.org/10.1021/jp9056797
34.
M. A. Tesa-Serrate, B. C. Marshall, E. J. Smoll, S. M. Purcell, M. L. Costen, J. M. Slattery, T. K. Minton, and K. G. McKendrick, “Ionic liquid-vacuum interfaces probed by reactive atom Scattering: Influence of alkyl chain length and anion volume,” J. Phys. Chem. C 119(10), 54915505 (2015).
http://dx.doi.org/10.1021/jp5126238
35.
K. Nakajima, A. Ohno, H. Hashimoto, M. Suzuki, and K. Kimura, “Observation of surface structure of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide using high-resolution Rutherford backscattering spectroscopy,” J. Chem. Phys. 133(4), 044702 (2010).
http://dx.doi.org/10.1063/1.3465578
36.
J. R. Roscioli and D. J. Nesbitt, “Quantum state resolved scattering from room-temperature ionic liquids: The role of cation versus anion structure at the interface,” J. Phys. Chem. A 115(34), 97649773 (2011).
http://dx.doi.org/10.1021/jp2033802
37.
C. Waring, P. A. J. Bagot, J. M. Slattery, M. L. Costen, and K. G. McKendrick, “O(P-3) atoms as a chemical probe of surface ordering in ionic liquids,” J. Phys. Chem. A 114(14), 48964904 (2010).
http://dx.doi.org/10.1021/jp912045j
38.
M. Mezger, B. M. Ocko, H. Reichert, and M. Deutsch, “Surface layering and melting in an ionic liquid studied by resonant soft X-ray reflectivity,” Proc. Natl. Acad. Sci. U. S. A. 110(10), 37333737 (2013).
http://dx.doi.org/10.1073/pnas.1211749110
39.
B. L. Bhargava and S. Balasubramanian, “Layering at an ionic liquid-vapor interface: A molecular dynamics simulation study of [bmim][PF6],” J. Am. Chem. Soc. 128(31), 1007310078 (2006).
http://dx.doi.org/10.1021/ja060035k
40.
G. Hantal, I. Voroshylova, M. N. D. S. Cordeiro, and M. Jorge, “A systematic molecular simulation study of ionic liquid surfaces using intrinsic analysis methods,” Phys. Chem. Chem. Phys. 14(15), 52005213 (2012).
http://dx.doi.org/10.1039/c2cp23967a
41.
M. Lisal, Z. Posel, and P. Izak, “Air-liquid interfaces of imidazolium-based [TF2N-] ionic liquids: Insight from molecular dynamics simulations,” Phys. Chem. Chem. Phys. 14(15), 51645177 (2012).
http://dx.doi.org/10.1039/c2cp23572b
42.
R. M. Lynden-Bell, M. G. Del Popolo, T. G. A. Youngs, J. Kohanoff, C. G. Hanke, J. B. Harper, and C. C. Pinilla, “Simulations of ionic liquids, solutions, and surfaces,” Acc. Chem. Res. 40(11), 11381145 (2007).
http://dx.doi.org/10.1021/ar700065s
43.
A. S. Pensado, M. F. C. Gomes, J. N. C. Lopes, P. Malfreyt, and A. A. H. Padua, “Effect of alkyl chain length and hydroxyl group functionalization on the surface properties of imidazolium ionic liquids,” Phys. Chem. Chem. Phys. 13(30), 1351813526 (2011).
http://dx.doi.org/10.1039/c1cp20563c
44.
W. Jiang, Y. T. Wang, T. Y. Yan, and G. A. Voth, “A multiscale coarse-graining study of the liquid/vacuum interface of room-temperature ionic liquids with alkyl substituents of different lengths,” J. Phys. Chem. C 112(4), 11321139 (2008).
http://dx.doi.org/10.1021/jp077643m
45.
C. Kolbeck, “Surface characterisation of ionic liquid systems and in situ monitoring of liquid-phase reactions by X-ray photoelectron spectroscopy,” Ph.D. thesis,Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 2012.
46.
C. Kolbeck, I. Niedermaier, A. Deyko, K. R. J. Lovelock, N. Taccardi, W. Wei, P. Wasserscheid, F. Maier, and H.-P. Steinrück, “Influence of substituents and functional groups on the surface composition of ionic liquids,” Chem. - Eur. J. 20(14), 39543965 (2014).
http://dx.doi.org/10.1002/chem.201304549
47.
S. Men, B. B. Hurisso, K. R. J. Lovelock, and P. Licence, “Does the influence of substituents impact upon the surface composition of pyrrolidinium-based ionic liquids? An angle resolved XPS study,” Phys. Chem. Chem. Phys. 14(15), 52295238 (2012).
http://dx.doi.org/10.1039/c2cp40262a
48.
V. Lockett, R. Sedev, C. Bassell, and J. Ralston, “Angle-resolved X-ray photoelectron spectroscopy of the surface of imidazolium ionic liquids,” Phys. Chem. Chem. Phys. 10(9), 13301335 (2008).
http://dx.doi.org/10.1039/b713584j
49.
N. Taccardi, I. Niedermaier, F. Maier, H.-P. Steinrück, and P. Wasserscheid, “Cyclic thiouronium ionic liquids: Physicochemical properties and their electronic structure probed by X-ray induced photoelectron spectroscopy,” Chem. - Eur. J. 18(27), 82888291 (2012).
http://dx.doi.org/10.1002/chem.201200971
50.
C. Kolbeck, A. Deyko, T. Matsuda, F. T. U. Kohler, P. Wasserscheid, F. Maier, and H.-P. Steinrück, “Temperature-dependent surface-enrichment effects of imidazolium-based ionic liquids,” ChemPhysChem 14(16), 37263730 (2013).
http://dx.doi.org/10.1002/cphc.201300719
51.
C. Kolbeck, N. Taccardi, N. Paape, P. S. Schulz, P. Wasserscheid, H.-P. Steinrück, and F. Maier, “Redox chemistry, solubility, and surface distribution of Pt(II) and Pt(IV) complexes dissolved in ionic liquids,” J. Mol. Liq. 192, 103113 (2014).
http://dx.doi.org/10.1016/j.molliq.2013.07.007
52.
T. Cremer, M. Stark, A. Deyko, H.-P. Steinrück, and F. Maier, “Liquid/Solid interface of ultrathin ionic liquid films: [C1C1lm][Tf2N] and [C8C1Im][Tf2N] on Au(111),” Langmuir 27(7), 36623671 (2011).
http://dx.doi.org/10.1021/la105007c
53.
V. Lockett, R. Sedev, S. Harmer, J. Ralston, M. Horne, and T. Rodopoulos, “Orientation and mutual location of ions at the surface of ionic liquids,” Phys. Chem. Chem. Phys. 12(41), 1381613827 (2010).
http://dx.doi.org/10.1039/c0cp00683a
54.
A. Ulbrich, M. Reinmoller, W. J. D. Beenken, and S. Krischok, “Surface electronic structure of [XMIm]Cl probed by surface-sensitive spectroscopy,” ChemPhysChem 13(7), 17181724 (2012).
http://dx.doi.org/10.1002/cphc.201100972
55.
A. W. Taylor, F. L. Qiu, I. J. Villar-Garcia, and P. Licence, “Spectroelectrochemistry at ultrahigh vacuum: In situ monitoring of electrochemically generated species by x-ray photoelectron spectroscopy,” Chem. Commun. 2009(39), 58175819.
http://dx.doi.org/10.1039/b915302k
56.
F. L. Qiu, A. W. Taylor, S. Men, I. J. Villar-Garcia, and P. Licence, “An ultra high vacuum-spectroelectrochemical study of the dissolution of copper in the ionic liquid (N-methylacetate)-4-picolinium bis(trifluoromethylsulfonyl)imide,” Phys. Chem. Chem. Phys. 12(8), 19821990 (2010).
http://dx.doi.org/10.1039/b924985k
57.
J. A. R. Samson, “Angular distributions of photoelectrons and partial photoionization cross-sections,” Philos. Trans. R. Soc., A 268(1184), 141-146 (1970).
http://dx.doi.org/10.1098/rsta.1970.0067
58.
S. M. Goldberg, C. S. Fadley, and S. Kono, “Photo-ionization cross-sections for atomic orbitals with random and fixed spatial orientation,” J. Electron Spectrosc. Relat. Phenom. 21(4), 285363 (1981).
http://dx.doi.org/10.1016/0368-2048(81)85067-0
59.
K. Wandelt, Surface and Interface Science (Wiley-VCH, Weinheim, 2012).
60.
S. Babenkov, V. Aristov, O. Molodtsova, K. Winkler, L. Glaser, I. Shevchuk, F. Scholz, J. Seltmann, and J. Viefhaus, “A new dynamic-XPS end-station for beamline P04 at PETRA III/DESY,” Nucl. Instrum. Methods Phys. Res., Sect. A 777, 189193 (2015).
http://dx.doi.org/10.1016/j.nima.2014.12.065
61.
I. J. Villar-Garcia, S. Fearn, G. F. De Gregorio, N. L. Ismail, F. J. V. Gschwend, A. J. S. McIntosh, and K. R. J. Lovelock, “The ionic liquid-vacuum outer atomic surface: A low-energy ion scattering study,” Chem. Sci. 5(11), 44044418 (2014).
http://dx.doi.org/10.1039/C4SC00640B
62.
A. Kauling, G. Ebeling, J. Morais, A. Padua, T. Grehl, H. H. Brongersma, and J. Dupont, “Surface composition/organization of ionic liquids with Au nanoparticles revealed by high-sensitivity low-energy ion scattering,” Langmuir 29(46), 1430114306 (2013).
http://dx.doi.org/10.1021/la403388b
63.
Argus Spectrometer User Guide, version 1, Omicron NanoTechnology GmbH,2012.
64.
C. D. Wagner, L. E. Davis, M. V. Zeller, J. A. Taylor, R. H. Raymond, and L. H. Gale, “Empirical atomic sensitivity factors for quantitative-analysis by electron-spectroscopy for chemical-analysis,” Surf. Interface Anal. 3(5), 211225 (1981).
http://dx.doi.org/10.1002/sia.740030506
65.
Casa XPS version 2.3.16, Casa Software Ltd, 2010.
66.
E. F. Smith, F. J. M. Rutten, I. J. Villar-Garcia, D. Briggs, and P. Licence, “Ionic liquids in vacuo: Analysis of liquid surfaces using ultra-high-vacuum techniques,” Langmuir 22(22), 93869392 (2006).
http://dx.doi.org/10.1021/la061248q
67.
C. Lourenco, C. I. Melo, R. Bogel-Lukasik, and E. Bogel-Lukasik, “Solubility advantage of Pyrazine-2-carboxamide: Application of alternative solvents on the way to the future pharmaceutical development,” J. Chem. Eng. Data 57(5), 15251533 (2012).
http://dx.doi.org/10.1021/je300044x
68.
I. J. Villar-Garcia, E. F. Smith, A. W. Taylor, F. L. Qiu, K. R. J. Lovelock, R. G. Jones, and P. Licence, “Charging of ionic liquid surfaces under x-ray irradiation: The measurement of absolute binding energies by XPS,” Phys. Chem. Chem. Phys. 13(7), 27972808 (2011).
http://dx.doi.org/10.1039/C0CP01587C
69.
See supplementary material at http://dx.doi.org/10.1063/1.4942943 for a thick film of the ionic liquid [C8C1Im][Tf2N] exhibits pronounced charging effects at temperatures below −70 °C in LEIS.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/rsi/87/4/10.1063/1.4942943
Loading
/content/aip/journal/rsi/87/4/10.1063/1.4942943
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/87/4/10.1063/1.4942943
2016-04-08
2016-09-28

Abstract

The investigation of liquid surfaces and interfaces with the powerful toolbox of ultra-high vacuum (UHV)-based surface science techniques generally has to overcome the issue of liquid evaporation within the vacuum system. In the last decade, however, new classes of liquids with negligible vapor pressure at room temperature—in particular, ionic liquids (ILs)—have emerged for surface science studies. It has been demonstrated that particularly angle-resolved X-ray Photoelectron Spectroscopy (ARXPS) allows for investigating phenomena that occur at gas-liquid and liquid-solid interfaces on the molecular level. The results are not only relevant for IL systems but also for liquids in general. In all of these previous ARXPS studies, the sample holder had to be tilted in order to change the polar detection angle of emitted photoelectrons, which restricted the liquid systems to very thin viscous IL films coating a flat solid support. We now report on the concept and realization of a new and unique laboratory “Dual Analyzer System for Surface Analysis (DASSA)” which enables fast ARXPS, UV photoelectron spectroscopy, imaging XPS, and low-energy ion scattering at the horizontal surface plane of macroscopically thick non-volatile liquid samples. It comprises a UHV chamber equipped with two electron analyzers mounted for simultaneous measurements in 0° and 80° emission relative to the surface normal. The performance of DASSA on a first macroscopic liquid system will be demonstrated.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/87/4/1.4942943.html;jsessionid=8cSc_Ia1Z7il2yeq2NfG5r3R.x-aip-live-02?itemId=/content/aip/journal/rsi/87/4/10.1063/1.4942943&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/87/4/10.1063/1.4942943&pageURL=http://scitation.aip.org/content/aip/journal/rsi/87/4/10.1063/1.4942943'
Right1,Right2,Right3,