Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
H. Fellner-Feldegg, H. Siegbahn, L. Asplund, P. Kelfve, and K. Siegbahn, “ESCA applied to liquids IV. A wire system for ESCA measurements on liquids,” J. Electron Spectrosc. Relat. Phenom. 7, 421428 (1975).
H. Siegbahn and K. Siegbahn, “ESCA applied to liquids,” J. Electron Spectrosc. Relat. Phenom. 2(3), 319325 (1973).
H. Siegbahn, S. Svensson, and M. Lundholm, “A new method for ESCA studies of liquid-phase samples,” J. Electron Spectrosc. Relat. Phenom. 24, 205213 (1981).
B. Winter, “Liquid microjet for photoelectron spectroscopy,” Nucl. Instrum. Methods Phys. Res., Sect. A 601(1-2), 139150 (2009).
D. E. Starr, Z. Liu, M. Havecker, A. Knop-Gericke, and H. Bluhm, “Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy,” Chem. Soc. Rev. 42(13), 58335857 (2013).
M. Salmeron and R. Schlogl, “Ambient pressure photoelectron spectroscopy: A new tool for surface science and nanotechnology,” Surf. Sci. Rep. 63(4), 169199 (2008).
D. Nordlund, M. Odelius, H. Bluhm, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Electronic structure effects in liquid water studied by photoelectron spectroscopy and density functional theory,” Chem. Phys. Lett. 460(1-3), 8692 (2008).
M. H. Cheng, K. M. Callahan, A. M. Margarella, D. J. Tobias, J. C. Hemminger, H. Bluhm, and M. J. Krisch, “Ambient pressure x-ray photoelectron spectroscopy and molecular dynamics simulation studies of liquid/vapor interfaces of aqueous NaCl, RbCl, and RbBr solutions,” J. Phys. Chem. C 116(7), 45454555 (2012).
F. Mangolini, J. Ahlund, G. E. Wabiszewski, V. P. Adiga, P. Egberts, F. Streller, K. Backlund, P. G. Karlsson, B. Wannberg, and R. W. Carpick, “Angle-resolved environmental x-ray photoelectron spectroscopy: A new laboratory setup for photoemission studies at pressures up to 0.4 Torr,” Rev. Sci. Instrum. 83(9), 093112 (2012).
M. A. Brown, A. B. Redondo, I. Jordan, N. Duyckaerts, M. T. Lee, M. Ammann, F. Nolting, A. Kleibert, T. Huthwelker, J. P. Machler, M. Birrer, J. Honegger, R. Wetter, H. J. Worner, and J. A. van Bokhoven, “A new endstation at the swiss light source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions,” Rev. Sci. Instrum. 84(7), 073904 (2013).
M. E. Grass, P. G. Karlsson, F. Aksoy, M. Lundqvist, B. Wannberg, B. S. Mun, Z. Hussain, and Z. Liu, “New ambient pressure photoemission endstation at advanced light source beamline 9.3.2,” Rev. Sci. Instrum. 81(5), 053106 (2010).
J. Schnadt, J. Knudsen, J. N. Andersen, H. Siegbahn, A. Pietzsch, F. Hennies, N. Johansson, N. Martensson, G. Ohrwall, S. Bahr, S. Mahl, and O. Schaff, “The new ambient-pressure X-ray photoelectron spectroscopy instrument at MAX-lab,” J. Synchrotron Radiat. 19, 701704 (2012).
S. Kaya, H. Ogasawara, L. A. Naslund, J. O. Forsell, H. S. Casalongue, D. J. Miller, and A. Nilsson, “Ambient-pressure photoelectron spectroscopy for heterogeneous catalysis and electrochemistry,” Catal. Today 205, 101105 (2013).
E. F. Smith, I. J. Villar garcia, D. Briggs, and P. Licence, “Ionic liquids in vacuo; solution-phase X-ray photoelectron spectroscopy,” Chem. Commun. 2005(45), 56335635.
J. M. Gottfried, F. Maier, J. Rossa, D. Gerhard, P. S. Schulz, P. Wasserscheid, and H.-P. Steinrück, “Surface studies on the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate using X-ray photoelectron spectroscopy (XPS),” Z. Phys. Chem. 220(10-11), 14391453 (2006).
F. Maier, J. M. Gottfried, J. Rossa, D. Gerhard, P. S. Schulz, W. Schwieger, P. Wasserscheid, and H.-P. Steinrück, “Surface enrichment and depletion effects of ions dissolved in an ionic liquid: An x-ray photoelectron spectroscopy study,” Angew. Chem., Int. Ed. 45(46), 77787780 (2006).
S. Caporali, U. Bardi, and A. Lavacchi, “X-ray photoelectron spectroscopy and low energy ion scattering studies on 1-buthyl-3-methyl-imidazolium bis(trifluoromethane) sulfonimide,” J. Electron Spectrosc. Relat. Phenom. 151(1), 48 (2006).
O. Höfft, S. Bahr, M. Himmerlich, S. Krischok, J. A. Schaefer, and V. Kempter, “Electronic structure of the surface of the ionic liquid [EMIM][Tf2N] studied by metastable impact electron spectroscopy (MIES), UPS, and XPS,” Langmuir 22(17), 71207123 (2006).
S. Krischok, R. Ottking, W. J. D. Beenken, M. Himmerlich, P. Lorenz, O. Höfft, S. Bahr, V. Kempter, and J. A. Schaefer, “A comparative study on the electronic structure of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide RT-ionic liquid by electron spectroscopy and first principles calculations,” Z. Phys. Chem. 220(10-11), 14071416 (2006).
C. Kolbeck, M. Killian, F. Maier, N. Paape, P. Wasserscheid, and H.-P. Steinrück, “Surface characterization of functionalized imidazolium-based ionic liquids,” Langmuir 24(17), 95009507 (2008).
A. Jablonski and C. J. Powell, “Information depth and the mean escape depth in Auger electron spectroscopy and X-ray photoelectron spectroscopy,” J. Vac. Sci. Technol., A 21(1), 274283 (2003).
K. R. J. Lovelock, I. J. Villar-Garcia, F. Maier, H.-P. Steinrück, and P. Licence, “Photoelectron spectroscopy of ionic liquid-based interfaces,” Chem. Rev. 110(9), 51585190 (2010).
F. Maier, T. Cremer, C. Kolbeck, K. R. J. Lovelock, N. Paape, P. S. Schulz, P. Wasserscheidc, and H.-P. Steinrück, “Insights into the surface composition and enrichment effects of ionic liquids and ionic liquid mixtures,” Phys. Chem. Chem. Phys. 12(8), 19051915 (2010).
I. Niedermaier, M. Bahlmann, C. Papp, C. Kolbeck, W. Wei, S. K. Calderon, M. Grabau, P. S. Schulz, P. Wasserscheid, H.-P. Steinrück, and F. Maier, “Carbon dioxide capture by an amine functionalized ionic liquid: Fundamental differences of surface and bulk behavior,” J. Am. Chem. Soc. 136(1), 436441 (2014).
H.-P. Steinrück, “Surface science goes liquid !,” Surf. Sci. 604(5-6), 481484 (2010).
H.-P. Steinrück, “Recent developments in the study of ionic liquid interfaces using X-ray photoelectron spectroscopy and potential future directions,” Phys. Chem. Chem. Phys. 14(15), 50105029 (2012).
I. Niedermaier, N. Taccardi, P. Wasserscheid, F. Maier, and H.-P. Steinrück, “Probing a gas/liquid acid-base reaction by x-ray photoelectron spectroscopy,” Angew. Chem., Int. Ed. 52(34), 89048907 (2013).
K. R. J. Lovelock, C. Kolbeck, T. Cremer, N. Paape, P. S. Schulz, P. Wasserscheid, F. Maier, and H.-P. Steinrück, “Influence of different substituents on the surface composition of ionic liquids studied using ARXPS,” J. Phys. Chem. B 113(9), 28542864 (2009).
C. Kolbeck, T. Cremer, K. R. J. Lovelock, N. Paape, P. S. Schulz, P. Wasserscheid, F. Maier, and H.-P. Steinrück, “Influence of different anions on the surface composition of ionic liquids studied using ARXPS,” J. Phys. Chem. B 113(25), 86828688 (2009).
C. S. Santos and S. Baldelli, “Alkyl chain interaction at the surface of room temperature ionic liquids: Systematic variation of alkyl chain length (R = C1-C4, C8) in both cation and anion of [RMIM][R-OSO3] by sum frequency generation and surface tension,” J. Phys. Chem. B 113(4), 923933 (2009).
Y. Jeon, J. Sung, W. Bu, D. Vaknin, Y. Ouchi, and D. Kim, “Interfacial restructuring of ionic liquids determined by sum-frequency generation spectroscopy and X-Ray reflectivity,” J. Phys. Chem. C 112(49), 1964919654 (2008).
T. Iwahashi, T. Nishi, H. Yamane, T. Miyamae, K. Kanai, K. Seki, D. Kim, and Y. Ouchi, “Surface structural study on ionic liquids using metastable atom electron spectroscopy,” J. Phys. Chem. C 113(44), 1923719243 (2009).
M. A. Tesa-Serrate, B. C. Marshall, E. J. Smoll, S. M. Purcell, M. L. Costen, J. M. Slattery, T. K. Minton, and K. G. McKendrick, “Ionic liquid-vacuum interfaces probed by reactive atom Scattering: Influence of alkyl chain length and anion volume,” J. Phys. Chem. C 119(10), 54915505 (2015).
K. Nakajima, A. Ohno, H. Hashimoto, M. Suzuki, and K. Kimura, “Observation of surface structure of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide using high-resolution Rutherford backscattering spectroscopy,” J. Chem. Phys. 133(4), 044702 (2010).
J. R. Roscioli and D. J. Nesbitt, “Quantum state resolved scattering from room-temperature ionic liquids: The role of cation versus anion structure at the interface,” J. Phys. Chem. A 115(34), 97649773 (2011).
C. Waring, P. A. J. Bagot, J. M. Slattery, M. L. Costen, and K. G. McKendrick, “O(P-3) atoms as a chemical probe of surface ordering in ionic liquids,” J. Phys. Chem. A 114(14), 48964904 (2010).
M. Mezger, B. M. Ocko, H. Reichert, and M. Deutsch, “Surface layering and melting in an ionic liquid studied by resonant soft X-ray reflectivity,” Proc. Natl. Acad. Sci. U. S. A. 110(10), 37333737 (2013).
B. L. Bhargava and S. Balasubramanian, “Layering at an ionic liquid-vapor interface: A molecular dynamics simulation study of [bmim][PF6],” J. Am. Chem. Soc. 128(31), 1007310078 (2006).
G. Hantal, I. Voroshylova, M. N. D. S. Cordeiro, and M. Jorge, “A systematic molecular simulation study of ionic liquid surfaces using intrinsic analysis methods,” Phys. Chem. Chem. Phys. 14(15), 52005213 (2012).
M. Lisal, Z. Posel, and P. Izak, “Air-liquid interfaces of imidazolium-based [TF2N-] ionic liquids: Insight from molecular dynamics simulations,” Phys. Chem. Chem. Phys. 14(15), 51645177 (2012).
R. M. Lynden-Bell, M. G. Del Popolo, T. G. A. Youngs, J. Kohanoff, C. G. Hanke, J. B. Harper, and C. C. Pinilla, “Simulations of ionic liquids, solutions, and surfaces,” Acc. Chem. Res. 40(11), 11381145 (2007).
A. S. Pensado, M. F. C. Gomes, J. N. C. Lopes, P. Malfreyt, and A. A. H. Padua, “Effect of alkyl chain length and hydroxyl group functionalization on the surface properties of imidazolium ionic liquids,” Phys. Chem. Chem. Phys. 13(30), 1351813526 (2011).
W. Jiang, Y. T. Wang, T. Y. Yan, and G. A. Voth, “A multiscale coarse-graining study of the liquid/vacuum interface of room-temperature ionic liquids with alkyl substituents of different lengths,” J. Phys. Chem. C 112(4), 11321139 (2008).
C. Kolbeck, “Surface characterisation of ionic liquid systems and in situ monitoring of liquid-phase reactions by X-ray photoelectron spectroscopy,” Ph.D. thesis,Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 2012.
C. Kolbeck, I. Niedermaier, A. Deyko, K. R. J. Lovelock, N. Taccardi, W. Wei, P. Wasserscheid, F. Maier, and H.-P. Steinrück, “Influence of substituents and functional groups on the surface composition of ionic liquids,” Chem. - Eur. J. 20(14), 39543965 (2014).
S. Men, B. B. Hurisso, K. R. J. Lovelock, and P. Licence, “Does the influence of substituents impact upon the surface composition of pyrrolidinium-based ionic liquids? An angle resolved XPS study,” Phys. Chem. Chem. Phys. 14(15), 52295238 (2012).
V. Lockett, R. Sedev, C. Bassell, and J. Ralston, “Angle-resolved X-ray photoelectron spectroscopy of the surface of imidazolium ionic liquids,” Phys. Chem. Chem. Phys. 10(9), 13301335 (2008).
N. Taccardi, I. Niedermaier, F. Maier, H.-P. Steinrück, and P. Wasserscheid, “Cyclic thiouronium ionic liquids: Physicochemical properties and their electronic structure probed by X-ray induced photoelectron spectroscopy,” Chem. - Eur. J. 18(27), 82888291 (2012).
C. Kolbeck, A. Deyko, T. Matsuda, F. T. U. Kohler, P. Wasserscheid, F. Maier, and H.-P. Steinrück, “Temperature-dependent surface-enrichment effects of imidazolium-based ionic liquids,” ChemPhysChem 14(16), 37263730 (2013).
C. Kolbeck, N. Taccardi, N. Paape, P. S. Schulz, P. Wasserscheid, H.-P. Steinrück, and F. Maier, “Redox chemistry, solubility, and surface distribution of Pt(II) and Pt(IV) complexes dissolved in ionic liquids,” J. Mol. Liq. 192, 103113 (2014).
T. Cremer, M. Stark, A. Deyko, H.-P. Steinrück, and F. Maier, “Liquid/Solid interface of ultrathin ionic liquid films: [C1C1lm][Tf2N] and [C8C1Im][Tf2N] on Au(111),” Langmuir 27(7), 36623671 (2011).
V. Lockett, R. Sedev, S. Harmer, J. Ralston, M. Horne, and T. Rodopoulos, “Orientation and mutual location of ions at the surface of ionic liquids,” Phys. Chem. Chem. Phys. 12(41), 1381613827 (2010).
A. Ulbrich, M. Reinmoller, W. J. D. Beenken, and S. Krischok, “Surface electronic structure of [XMIm]Cl probed by surface-sensitive spectroscopy,” ChemPhysChem 13(7), 17181724 (2012).
A. W. Taylor, F. L. Qiu, I. J. Villar-Garcia, and P. Licence, “Spectroelectrochemistry at ultrahigh vacuum: In situ monitoring of electrochemically generated species by x-ray photoelectron spectroscopy,” Chem. Commun. 2009(39), 58175819.
F. L. Qiu, A. W. Taylor, S. Men, I. J. Villar-Garcia, and P. Licence, “An ultra high vacuum-spectroelectrochemical study of the dissolution of copper in the ionic liquid (N-methylacetate)-4-picolinium bis(trifluoromethylsulfonyl)imide,” Phys. Chem. Chem. Phys. 12(8), 19821990 (2010).
J. A. R. Samson, “Angular distributions of photoelectrons and partial photoionization cross-sections,” Philos. Trans. R. Soc., A 268(1184), 141-146 (1970).
S. M. Goldberg, C. S. Fadley, and S. Kono, “Photo-ionization cross-sections for atomic orbitals with random and fixed spatial orientation,” J. Electron Spectrosc. Relat. Phenom. 21(4), 285363 (1981).
K. Wandelt, Surface and Interface Science (Wiley-VCH, Weinheim, 2012).
S. Babenkov, V. Aristov, O. Molodtsova, K. Winkler, L. Glaser, I. Shevchuk, F. Scholz, J. Seltmann, and J. Viefhaus, “A new dynamic-XPS end-station for beamline P04 at PETRA III/DESY,” Nucl. Instrum. Methods Phys. Res., Sect. A 777, 189193 (2015).
I. J. Villar-Garcia, S. Fearn, G. F. De Gregorio, N. L. Ismail, F. J. V. Gschwend, A. J. S. McIntosh, and K. R. J. Lovelock, “The ionic liquid-vacuum outer atomic surface: A low-energy ion scattering study,” Chem. Sci. 5(11), 44044418 (2014).
A. Kauling, G. Ebeling, J. Morais, A. Padua, T. Grehl, H. H. Brongersma, and J. Dupont, “Surface composition/organization of ionic liquids with Au nanoparticles revealed by high-sensitivity low-energy ion scattering,” Langmuir 29(46), 1430114306 (2013).
Argus Spectrometer User Guide, version 1, Omicron NanoTechnology GmbH,2012.
C. D. Wagner, L. E. Davis, M. V. Zeller, J. A. Taylor, R. H. Raymond, and L. H. Gale, “Empirical atomic sensitivity factors for quantitative-analysis by electron-spectroscopy for chemical-analysis,” Surf. Interface Anal. 3(5), 211225 (1981).
Casa XPS version 2.3.16, Casa Software Ltd, 2010.
E. F. Smith, F. J. M. Rutten, I. J. Villar-Garcia, D. Briggs, and P. Licence, “Ionic liquids in vacuo: Analysis of liquid surfaces using ultra-high-vacuum techniques,” Langmuir 22(22), 93869392 (2006).
C. Lourenco, C. I. Melo, R. Bogel-Lukasik, and E. Bogel-Lukasik, “Solubility advantage of Pyrazine-2-carboxamide: Application of alternative solvents on the way to the future pharmaceutical development,” J. Chem. Eng. Data 57(5), 15251533 (2012).
I. J. Villar-Garcia, E. F. Smith, A. W. Taylor, F. L. Qiu, K. R. J. Lovelock, R. G. Jones, and P. Licence, “Charging of ionic liquid surfaces under x-ray irradiation: The measurement of absolute binding energies by XPS,” Phys. Chem. Chem. Phys. 13(7), 27972808 (2011).
See supplementary material at for a thick film of the ionic liquid [C8C1Im][Tf2N] exhibits pronounced charging effects at temperatures below −70 °C in LEIS.[Supplementary Material]

Data & Media loading...


Article metrics loading...



The investigation of liquid surfaces and interfaces with the powerful toolbox of ultra-high vacuum (UHV)-based surface science techniques generally has to overcome the issue of liquid evaporation within the vacuum system. In the last decade, however, new classes of liquids with negligible vapor pressure at room temperature—in particular, ionic liquids (ILs)—have emerged for surface science studies. It has been demonstrated that particularly angle-resolved X-ray Photoelectron Spectroscopy (ARXPS) allows for investigating phenomena that occur at gas-liquid and liquid-solid interfaces on the molecular level. The results are not only relevant for IL systems but also for liquids in general. In all of these previous ARXPS studies, the sample holder had to be tilted in order to change the polar detection angle of emitted photoelectrons, which restricted the liquid systems to very thin viscous IL films coating a flat solid support. We now report on the concept and realization of a new and unique laboratory “Dual Analyzer System for Surface Analysis (DASSA)” which enables fast ARXPS, UV photoelectron spectroscopy, imaging XPS, and low-energy ion scattering at the horizontal surface plane of macroscopically thick non-volatile liquid samples. It comprises a UHV chamber equipped with two electron analyzers mounted for simultaneous measurements in 0° and 80° emission relative to the surface normal. The performance of DASSA on a first macroscopic liquid system will be demonstrated.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd