Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/87/5/10.1063/1.4950748
1.
D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation (Cambridge University Press, Cambridge, 1999), p. 69.
2.
E. Spiller, Soft X-Ray Optics (SPIE-The International Society for Optical Engineering, Bellingham, 1994), p. 139.
3.
B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993).
http://dx.doi.org/10.1006/adnd.1993.1013
4.
Fachbereich Optische Technologien, X-ray optical systems–X-ray mirrors- Total reflection mirrors and multilayer mirrors, Technische Regel, Richtlinie ICS:17.180.30, VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik, Düsseldorf, 2011.
5.
I. A. Makhotkin, E. Zoethout, E. Louis, A. M. Yakunin, S. Müllender, and F. Bijkerk, Opt. Express 20, 11778 (2012).
http://dx.doi.org/10.1364/OE.20.011778
6.
A. Rack, T. Weitkamp, M. Riotte, D. Grigoriev, T. Rack, L. Helfen, T. Baumbach, R. Dietsch, T. Holz, M. Krämer, F. Siewert, M. Meduna, P. Cloetens, and E. Ziegler, J. Synchrotron Radiat. 17, 496 (2010).
http://dx.doi.org/10.1107/S0909049510011623
7.
F. Siewert, J. Buchheim, S. Boutet, G. J. Williams, P. A. Montanez, J. Krzywinski, and R. Signorato, Opt. Express 20, 4525 (2012).
http://dx.doi.org/10.1364/OE.20.004525
8.
F. Siewert, J. Buchheim, T. Zeschke, M. Störmer, G. Falkenberg, and R. Sankari, J. Synchrotron Radiat. 21, 968 (2014).
http://dx.doi.org/10.1107/S1600577514016221
9.
J.-P. Guigay, Ch. Morawe, V. Mocella, and C. Ferrero, Opt. Express 16, 12050 (2008).
http://dx.doi.org/10.1364/OE.16.012050
10.
Ch. Morawe, J.-P. Guigay, V. Mocella, and C. Ferrero, Opt. Express 16, 16138 (2008).
http://dx.doi.org/10.1364/OE.16.016138
11.
P. Ricardo, C. Novak, C. Michaelsen, J. Wiesmann, and R. Bormann, Appl. Opt. 40, 2747 (2001).
http://dx.doi.org/10.1364/AO.40.002747
12.
M. Schuster and H. Göbel, J. Phys. D: Appl. Phys. 28, A270 (1995).
http://dx.doi.org/10.1088/0022-3727/28/4A/053
13.
M. Schuster, H. Göbel, L. Brügemann, D. Bahr, F. Burgäzy, C. Michaelsen, M. Störmer, P. Ricardo, R. Dietsch, T. Holz, and H. Mai, Proc. SPIE 3767, 183 (1999).
http://dx.doi.org/10.1117/12.371116
14.
M. Bargheer, N. Zhavoronkov, R. Bruch, H. Legall, H. Stiel, M. Woerner, and T. Elsaesser, Appl. Phys. B: Lasers Opt. 80, 715 (2005).
http://dx.doi.org/10.1007/s00340-005-1792-7
15.
M. Ohring, Materials Science of Thin Films (Academic Press, San Diego, 2002), p. 109.
16.
S. Swann, Vacuum 38, 791 (1988).
http://dx.doi.org/10.1016/0042-207X(88)90465-4
17.
C. Liu, A. Macrander, J. Als-Nielsen, and K. Zhang, J. Vac. Sci. Technol., A 19, 1421 (2001).
http://dx.doi.org/10.1116/1.1353536
18.
E. N. Kotlikov, V. N. Prokashev, V. A. Ivanov, and A. N. Tropin, J. Opt. Technol. 76, 100 (2009).
http://dx.doi.org/10.1364/JOT.76.000100
19.
T. Fujimoto, B. Li, I. Kojima, S. Yokoyama, and S. Murakami, Rev. Sci. Instrum. 70, 4362 (1999).
http://dx.doi.org/10.1063/1.1150080
20.
C. Montcalm, R. F. Grabner, R. M. Hudyma, M. A. Schmidt, E. Spiller, C. C. Walton, M. Wedowski, and J. A. Folta, Appl. Opt. 41, 3262 (2002).
http://dx.doi.org/10.1364/AO.41.003262
21.
E. Louis, E. D. van Hattum, S. Alonso van der Westen, P. Sallé, K. T. Grootkarzijn, E. Zoethout, and F. Bijkerk, Proc. SPIE 7636, 76362T (2010).
http://dx.doi.org/10.1117/12.846566
22.
E. Louis, E. Zoethout, R. W. E. van de Kruijs, I. Nedulcu, A. E. Yakshin, S. Alonso van der Westen, T. Tsarfati, and F. Bijkerk, Proc. SPIE 5751, 1170 (2005).
http://dx.doi.org/10.1117/12.619856
23.
E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, Prog. Surf. Sci. 86, 255 (2011).
http://dx.doi.org/10.1016/j.progsurf.2011.08.001
24.
Y. S. Chu, C. Liu, D. C. Mancini, F. De Carlo, A. T. Macrander, B. Lai, and D. Shu, Rev. Sci. Instrum. 73, 1485 (2002).
http://dx.doi.org/10.1063/1.1423628
25.
A. Haibel, F. Beckmann, T. Dose, J. Herzen, M. Ogurreck, M. Müller, and A. Schreyer, Powder Diffr. 25, 161 (2010).
http://dx.doi.org/10.1154/1.3428364
26.
A. Rack, T. Weitkamp, I. Zanette, Ch. Morawe, A. Vivo Rommeveaux, P. Tafforeau, P. Cloetens, E. Ziegler, T. Rack, A. Cecilia, P. Vagovic, E. Harmann, R. Dietsch, and H. Riesemeier, Nucl. Instrum. Methods Phys. Res., Sect. A 649, 123 (2011).
http://dx.doi.org/10.1016/j.nima.2010.11.069
27.
A. Rack, T. Weitkamp, L. Assoufid, T. Rack, I. Zanette, Ch. Morawe, R. Kluender, and C. David, Nucl. Instrum. Methods Phys. Res., Sect. A 710, 101 (2013).
http://dx.doi.org/10.1016/j.nima.2012.10.116
28.
T. Bigault, E. Ziegler, C. Morawe, R. Hustache, J.-Y. Massonnat, and G. Rostaing, Proc. SPIE 5195, 12 (2003).
http://dx.doi.org/10.1117/12.515980
29.
K. J. S. Sawhney, I. P. Dolbnya, S. M. Scott, M. K. Tiwari, G. M. Preece, S. G. Alcock, and A. W. Malandain, Proc. SPIE 8139, 813908 (2011).
http://dx.doi.org/10.1117/12.894920
30.
P. Kirkpatrick and A. V. Baez, J. Opt. Soc. Am. 38, 766 (1948).
http://dx.doi.org/10.1364/JOSA.38.000766
31.
C. Morawe and M. Osterhoff, Nucl. Instrum. Methods Phys. Res., Sect. A 616, 98 (2010).
http://dx.doi.org/10.1016/j.nima.2009.11.064
32.
M. Stampanoni, F. Marone, G. Mikuljan, K. Jefimovs, P. Trtik, J. Vila-Comamala, C. David, and R. Abela, Proc. SPIE 7078, 70780V (2008).
http://dx.doi.org/10.1117/12.793759
33.
K. Ichiyanagi, T. Sato, S. Nozawa, K. H. Kim, J. H. Lee, J. Choi, A. Tomita, H. Ichikawa, S. Adachi, H. Ihee, and S. Koshihara, J. Synchrotron Radiat. 16, 391 (2009).
http://dx.doi.org/10.1107/S0909049509005986
34.
H. Jiang, Y. He, Y. He, A. Li, H. Wang, Y. Zheng, and Z. Dong, J. Synchrotron Radiat. 22, 1379 (2015).
http://dx.doi.org/10.1107/S1600577515017828
35.
T. D. Ngyuen, R. Gronsky, and J. B. Kortright, Mater. Res. Soc. Symp. Proc. 230, 109 (1992).
http://dx.doi.org/10.1557/PROC-230-109
36.
C. C. Walton and J. B. Kortright, Mater. Res. Soc. Symp. Proc. 382, 369 (1995).
http://dx.doi.org/10.1557/PROC-382-369
37.
S. Bajt, J. Vac. Sci. Technol., A 18, 557 (2000).
http://dx.doi.org/10.1116/1.582224
38.
I. V. Kozhevnikov, E. O. Filatova, A. A. Sokolov, A. S. Konashuk, F. Siewert, M. Störmer, J. Gaudin, B. Keitel, L. Samoylova, and H. Sinn, J. Synchrotron Radiat. 22, 348 (2015).
http://dx.doi.org/10.1107/S1600577515000430
39.
M. Störmer, F. Siewert, and H. Sinn, J. Synchrotron Radiat. 23, 50 (2016).
http://dx.doi.org/10.1107/S1600577515020901
40.
J. Chalupsky, V. Hajkova, V. Altapova, T. Burian, A. J. Gleeson, L. Juha, M. Jurek, H. Sinn, M. Störmer, R. Sobierajski, K. Tiedtke, S. Toleikis, T. Tschentscher, L. Vysin, H. Wabnitz, and J. Gaudin, Appl. Phys. Lett. 95, 031111 (2009).
http://dx.doi.org/10.1063/1.3184785
41.
H. Sinn, J. Gaudin, L. Samoylova, A. Trapp, and G. Galasso, “Conceptual design report: X-ray optics and beam transport,” Technical Note, XFEL.EU TN-11-002 (European XFEL GmbH, Hamburg, Germany, 2011).
42.
A. Aquila, R. Sobierajski, C. Ozkan, V. Hájková, T. Burian, J. Chalupský, L. Juha, M. Störmer, S. Bajt, M. T. Klepka, P. Dluzewski, K. Morawiec, H. Ohashi, T. Koyama, K. Tono, Y. Inubushi, M. Yabashi, H. Sinn, T. Tschentscher, A. P. Mancuso, and J. Gaudin, Appl. Phys. Lett. 106, 241905 (2015).
http://dx.doi.org/10.1063/1.4922380
43.
I. V. Kozhevnikov, A. V. Buzmakov, F. Siewert, K. Tiedtke, M. Störmer, L. Samoylova, and H. Sinn, J. Synchrotron Radiat. 23, 78 (2016).
http://dx.doi.org/10.1107/S160057751502202X
44.
M. Störmer, C. Horstmann, D. Häussler, E. Spieker, F. Siewert, F. Scholze, F. Hertlein, W. Jäger, and R. Bormann, Proc. SPIE 7077, 707705 (2008).
http://dx.doi.org/10.1117/12.798895
45.
M. Störmer, C. Horstmann, F. Siewert, F. Scholze, M. Krumrey, F. Hertlein, M. Matiaske, J. Wiesmann, and J. Gaudin, AIP Conf. Proc. 1234, 456 (2010).
http://dx.doi.org/10.1063/1.3463321
46.
D. L. Windt, Comput. Phys. 12, 360 (1998).
http://dx.doi.org/10.1063/1.168689
47.
A. Ulyanenkov and S. Sobolewski, J. Phys. D: Appl. Phys. 38, 235 (2005).
http://dx.doi.org/10.1088/0022-3727/38/10A/046
48.
G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).
http://dx.doi.org/10.1103/physrevlett.56.930
49.
E. Meyer, Prog. Surf. Sci. 41, 3 (1992).
http://dx.doi.org/10.1016/0079-6816(92)90009-7
50.
T. B. Massalski, Binary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1990).
51.
U. Bonse, G. Materlik, and W. Schröder, J. Appl. Crystallogr. 9, 223 (1976).
http://dx.doi.org/10.1107/S0021889876011011
52.
M. Störmer, F. Siewert, and J. Gaudin, Proc. SPIE 8078, 80780G (2011).
http://dx.doi.org/10.1117/12.887530
53.
A. Gibaud, G. Vignaud, and S. K. Sinha, Acta Crystallogr., Sect. A: Found. Crystallogr. 49, 642 (1993).
http://dx.doi.org/10.1107/S0108767392013126
http://aip.metastore.ingenta.com/content/aip/journal/rsi/87/5/10.1063/1.4950748
Loading
/content/aip/journal/rsi/87/5/10.1063/1.4950748
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/87/5/10.1063/1.4950748
2016-05-23
2016-12-09

Abstract

X-ray mirrors are needed for beam shaping and monochromatization at advanced research light sources, for instance, free-electron lasers and synchrotron sources. Such mirrors consist of a substrate and a coating. The shape accuracy of the substrate and the layer precision of the coating are the crucial parameters that determine the beam properties required for various applications. In principal, the selection of the layer materials determines the mirror reflectivity. A single layer mirror offers high reflectivity in the range of total external reflection, whereas the reflectivity is reduced considerably above the critical angle. A periodic multilayer can enhance the reflectivity at higher angles due to Bragg reflection. Here, the selection of a suitable combination of layer materials is essential to achieve a high flux at distinct photon energies, which is often required for applications such as microtomography, diffraction, or protein crystallography. This contribution presents the current development of a Ru/C multilayer mirror prepared by magnetron sputtering with a sputtering facility that was designed in-house at the Helmholtz-Zentrum Geesthacht. The deposition conditions were optimized in order to achieve ultra-high precision and high flux in future mirrors. Input for the improved deposition parameters came from investigations by transmission electron microscopy. The X-ray optical properties were investigated by means of X-ray reflectometry using Cu- and Mo-radiation. The change of the multilayer d-spacing over the mirror dimensions and the variation of the Bragg angles were determined. The results demonstrate the ability to precisely control the variation in thickness over the whole mirror length of 500 mm thus achieving picometer-precision in the meter-range.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/87/5/1.4950748.html;jsessionid=mAtdU1txqlbc6wmRRnf0Uk1g.x-aip-live-03?itemId=/content/aip/journal/rsi/87/5/10.1063/1.4950748&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/87/5/10.1063/1.4950748&pageURL=http://scitation.aip.org/content/aip/journal/rsi/87/5/10.1063/1.4950748'
Right1,Right2,Right3,