Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation (Cambridge University Press, Cambridge, 1999), p. 69.
E. Spiller, Soft X-Ray Optics (SPIE-The International Society for Optical Engineering, Bellingham, 1994), p. 139.
B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993).
Fachbereich Optische Technologien, X-ray optical systems–X-ray mirrors- Total reflection mirrors and multilayer mirrors, Technische Regel, Richtlinie ICS:17.180.30, VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik, Düsseldorf, 2011.
I. A. Makhotkin, E. Zoethout, E. Louis, A. M. Yakunin, S. Müllender, and F. Bijkerk, Opt. Express 20, 11778 (2012).
A. Rack, T. Weitkamp, M. Riotte, D. Grigoriev, T. Rack, L. Helfen, T. Baumbach, R. Dietsch, T. Holz, M. Krämer, F. Siewert, M. Meduna, P. Cloetens, and E. Ziegler, J. Synchrotron Radiat. 17, 496 (2010).
F. Siewert, J. Buchheim, S. Boutet, G. J. Williams, P. A. Montanez, J. Krzywinski, and R. Signorato, Opt. Express 20, 4525 (2012).
F. Siewert, J. Buchheim, T. Zeschke, M. Störmer, G. Falkenberg, and R. Sankari, J. Synchrotron Radiat. 21, 968 (2014).
J.-P. Guigay, Ch. Morawe, V. Mocella, and C. Ferrero, Opt. Express 16, 12050 (2008).
Ch. Morawe, J.-P. Guigay, V. Mocella, and C. Ferrero, Opt. Express 16, 16138 (2008).
P. Ricardo, C. Novak, C. Michaelsen, J. Wiesmann, and R. Bormann, Appl. Opt. 40, 2747 (2001).
M. Schuster and H. Göbel, J. Phys. D: Appl. Phys. 28, A270 (1995).
M. Schuster, H. Göbel, L. Brügemann, D. Bahr, F. Burgäzy, C. Michaelsen, M. Störmer, P. Ricardo, R. Dietsch, T. Holz, and H. Mai, Proc. SPIE 3767, 183 (1999).
M. Bargheer, N. Zhavoronkov, R. Bruch, H. Legall, H. Stiel, M. Woerner, and T. Elsaesser, Appl. Phys. B: Lasers Opt. 80, 715 (2005).
M. Ohring, Materials Science of Thin Films (Academic Press, San Diego, 2002), p. 109.
S. Swann, Vacuum 38, 791 (1988).
C. Liu, A. Macrander, J. Als-Nielsen, and K. Zhang, J. Vac. Sci. Technol., A 19, 1421 (2001).
E. N. Kotlikov, V. N. Prokashev, V. A. Ivanov, and A. N. Tropin, J. Opt. Technol. 76, 100 (2009).
T. Fujimoto, B. Li, I. Kojima, S. Yokoyama, and S. Murakami, Rev. Sci. Instrum. 70, 4362 (1999).
C. Montcalm, R. F. Grabner, R. M. Hudyma, M. A. Schmidt, E. Spiller, C. C. Walton, M. Wedowski, and J. A. Folta, Appl. Opt. 41, 3262 (2002).
E. Louis, E. D. van Hattum, S. Alonso van der Westen, P. Sallé, K. T. Grootkarzijn, E. Zoethout, and F. Bijkerk, Proc. SPIE 7636, 76362T (2010).
E. Louis, E. Zoethout, R. W. E. van de Kruijs, I. Nedulcu, A. E. Yakshin, S. Alonso van der Westen, T. Tsarfati, and F. Bijkerk, Proc. SPIE 5751, 1170 (2005).
E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, Prog. Surf. Sci. 86, 255 (2011).
Y. S. Chu, C. Liu, D. C. Mancini, F. De Carlo, A. T. Macrander, B. Lai, and D. Shu, Rev. Sci. Instrum. 73, 1485 (2002).
A. Haibel, F. Beckmann, T. Dose, J. Herzen, M. Ogurreck, M. Müller, and A. Schreyer, Powder Diffr. 25, 161 (2010).
A. Rack, T. Weitkamp, I. Zanette, Ch. Morawe, A. Vivo Rommeveaux, P. Tafforeau, P. Cloetens, E. Ziegler, T. Rack, A. Cecilia, P. Vagovic, E. Harmann, R. Dietsch, and H. Riesemeier, Nucl. Instrum. Methods Phys. Res., Sect. A 649, 123 (2011).
A. Rack, T. Weitkamp, L. Assoufid, T. Rack, I. Zanette, Ch. Morawe, R. Kluender, and C. David, Nucl. Instrum. Methods Phys. Res., Sect. A 710, 101 (2013).
T. Bigault, E. Ziegler, C. Morawe, R. Hustache, J.-Y. Massonnat, and G. Rostaing, Proc. SPIE 5195, 12 (2003).
K. J. S. Sawhney, I. P. Dolbnya, S. M. Scott, M. K. Tiwari, G. M. Preece, S. G. Alcock, and A. W. Malandain, Proc. SPIE 8139, 813908 (2011).
P. Kirkpatrick and A. V. Baez, J. Opt. Soc. Am. 38, 766 (1948).
C. Morawe and M. Osterhoff, Nucl. Instrum. Methods Phys. Res., Sect. A 616, 98 (2010).
M. Stampanoni, F. Marone, G. Mikuljan, K. Jefimovs, P. Trtik, J. Vila-Comamala, C. David, and R. Abela, Proc. SPIE 7078, 70780V (2008).
K. Ichiyanagi, T. Sato, S. Nozawa, K. H. Kim, J. H. Lee, J. Choi, A. Tomita, H. Ichikawa, S. Adachi, H. Ihee, and S. Koshihara, J. Synchrotron Radiat. 16, 391 (2009).
H. Jiang, Y. He, Y. He, A. Li, H. Wang, Y. Zheng, and Z. Dong, J. Synchrotron Radiat. 22, 1379 (2015).
T. D. Ngyuen, R. Gronsky, and J. B. Kortright, Mater. Res. Soc. Symp. Proc. 230, 109 (1992).
C. C. Walton and J. B. Kortright, Mater. Res. Soc. Symp. Proc. 382, 369 (1995).
S. Bajt, J. Vac. Sci. Technol., A 18, 557 (2000).
I. V. Kozhevnikov, E. O. Filatova, A. A. Sokolov, A. S. Konashuk, F. Siewert, M. Störmer, J. Gaudin, B. Keitel, L. Samoylova, and H. Sinn, J. Synchrotron Radiat. 22, 348 (2015).
M. Störmer, F. Siewert, and H. Sinn, J. Synchrotron Radiat. 23, 50 (2016).
J. Chalupsky, V. Hajkova, V. Altapova, T. Burian, A. J. Gleeson, L. Juha, M. Jurek, H. Sinn, M. Störmer, R. Sobierajski, K. Tiedtke, S. Toleikis, T. Tschentscher, L. Vysin, H. Wabnitz, and J. Gaudin, Appl. Phys. Lett. 95, 031111 (2009).
H. Sinn, J. Gaudin, L. Samoylova, A. Trapp, and G. Galasso, “Conceptual design report: X-ray optics and beam transport,” Technical Note, XFEL.EU TN-11-002 (European XFEL GmbH, Hamburg, Germany, 2011).
A. Aquila, R. Sobierajski, C. Ozkan, V. Hájková, T. Burian, J. Chalupský, L. Juha, M. Störmer, S. Bajt, M. T. Klepka, P. Dluzewski, K. Morawiec, H. Ohashi, T. Koyama, K. Tono, Y. Inubushi, M. Yabashi, H. Sinn, T. Tschentscher, A. P. Mancuso, and J. Gaudin, Appl. Phys. Lett. 106, 241905 (2015).
I. V. Kozhevnikov, A. V. Buzmakov, F. Siewert, K. Tiedtke, M. Störmer, L. Samoylova, and H. Sinn, J. Synchrotron Radiat. 23, 78 (2016).
M. Störmer, C. Horstmann, D. Häussler, E. Spieker, F. Siewert, F. Scholze, F. Hertlein, W. Jäger, and R. Bormann, Proc. SPIE 7077, 707705 (2008).
M. Störmer, C. Horstmann, F. Siewert, F. Scholze, M. Krumrey, F. Hertlein, M. Matiaske, J. Wiesmann, and J. Gaudin, AIP Conf. Proc. 1234, 456 (2010).
D. L. Windt, Comput. Phys. 12, 360 (1998).
A. Ulyanenkov and S. Sobolewski, J. Phys. D: Appl. Phys. 38, 235 (2005).
G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).
E. Meyer, Prog. Surf. Sci. 41, 3 (1992).
T. B. Massalski, Binary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1990).
U. Bonse, G. Materlik, and W. Schröder, J. Appl. Crystallogr. 9, 223 (1976).
M. Störmer, F. Siewert, and J. Gaudin, Proc. SPIE 8078, 80780G (2011).
A. Gibaud, G. Vignaud, and S. K. Sinha, Acta Crystallogr., Sect. A: Found. Crystallogr. 49, 642 (1993).

Data & Media loading...


Article metrics loading...



X-ray mirrors are needed for beam shaping and monochromatization at advanced research light sources, for instance, free-electron lasers and synchrotron sources. Such mirrors consist of a substrate and a coating. The shape accuracy of the substrate and the layer precision of the coating are the crucial parameters that determine the beam properties required for various applications. In principal, the selection of the layer materials determines the mirror reflectivity. A single layer mirror offers high reflectivity in the range of total external reflection, whereas the reflectivity is reduced considerably above the critical angle. A periodic multilayer can enhance the reflectivity at higher angles due to Bragg reflection. Here, the selection of a suitable combination of layer materials is essential to achieve a high flux at distinct photon energies, which is often required for applications such as microtomography, diffraction, or protein crystallography. This contribution presents the current development of a Ru/C multilayer mirror prepared by magnetron sputtering with a sputtering facility that was designed in-house at the Helmholtz-Zentrum Geesthacht. The deposition conditions were optimized in order to achieve ultra-high precision and high flux in future mirrors. Input for the improved deposition parameters came from investigations by transmission electron microscopy. The X-ray optical properties were investigated by means of X-ray reflectometry using Cu- and Mo-radiation. The change of the multilayer d-spacing over the mirror dimensions and the variation of the Bragg angles were determined. The results demonstrate the ability to precisely control the variation in thickness over the whole mirror length of 500 mm thus achieving picometer-precision in the meter-range.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd