Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/rsi/87/5/10.1063/1.4950906
1.
M. A. Blitz and P. W. Seakins, Chem. Soc. Rev. 41, 6318 (2012).
http://dx.doi.org/10.1039/c2cs35204d
2.
A. Canosa, F. Goulay, I. R. Sims, and B. R. Rowe, in Low Temperatures and Cold Molecules, edited by I. W. M. Smith (World Scientific, Singapore, 2008), Vol. 55.
3.
I. W. M. Smith, in Annual Review of Astronomy and Astrophysics, edited by S. M. Faber and E. VanDishoeck (Annual Reviews, 2011), Vol. 49, p. 29.
4.
J. Zador, C. A. Taatjes, and R. X. Fernandes, Prog. Energy Combust. Sci. 37, 371 (2011).
http://dx.doi.org/10.1016/j.pecs.2010.06.006
5.
P. W. Seakins, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 103, 173 (2007).
http://dx.doi.org/10.1039/b605650b
6.
D. E. Heard and M. J. Pilling, Chem. Rev. 103, 5163 (2003).
http://dx.doi.org/10.1021/cr020522s
7.
L. D’Ottone, D. Bauer, P. Campuzano-Jost, M. Fardy, and A. J. Hynes, Faraday Discuss. 130, 111 (2005).
http://dx.doi.org/10.1039/b417458p
8.
K. A. Holbrook, M. J. Pilling, and S. H. Robertson, Unimolecular Reactions (Wiley, Chichester, 1996).
9.
P. W. Seakins, S. H. Robertson, M. J. Pilling, D. M. Wardlaw, F. L. Nesbitt, R. P. Thorn, W. A. Payne, and L. J. Stief, J. Phys. Chem. 101, 9974 (1997).
http://dx.doi.org/10.1021/jp9720348
10.
I. W. M. Smith, J. Chem. Soc., Faraday Trans. 93, 3741 (1997).
http://dx.doi.org/10.1039/a704144f
11.
M. A. Blitz, N. J. B. Green, R. J. Shannon, M. J. Pilling, P. W. Seakins, C. M. Western, and S. H. Robertson, J. Phys. Chem. A 119, 7668 (2015).
http://dx.doi.org/10.1021/acs.jpca.5b01002
12.
M. J. Pilling, S. H. Robertson, and P. W. Seakins, J. Chem. Soc., Faraday Trans. 91, 4179 (1995).
http://dx.doi.org/10.1039/ft9959104179
13.
C. K. Westbrook, W. J. Pitz, and H. J. Curran, in HCCI and CAI Engines for the Automotive Industry, edited by H. Zhao (CRC Press, Boca Raton, 2007).
14.
M. F. Yao, Z. L. Zheng, and H. F. Liu, Prog. Energy Combust. Sci. 35, 398 (2009).
http://dx.doi.org/10.1016/j.pecs.2009.05.001
15.
R. Forster, M. Frost, D. Fulle, H. F. Hamann, H. Hippler, A. Schlepegrell, and J. Troe, J. Chem. Phys. 103, 2949 (1995).
http://dx.doi.org/10.1063/1.470482
16.
R. V. Ravikrishna, C. S. Cooper, and N. M. Laurendeau, Combust. Flame 117, 810 (1999).
http://dx.doi.org/10.1016/S0010-2180(98)00123-0
17.
K. Kohse-Hoinghaus, W. Perc, and T. Just, Ber. der Bunsen-Ges.-Phys. Chem. Chem. Phys. 87, 1052 (1983).
http://dx.doi.org/10.1002/bbpc.19830871119
18.
C. Bansch, J. Kiecherer, M. Szori, and M. Olzmann, J. Phys. Chem. A 117, 8343 (2013).
http://dx.doi.org/10.1021/jp405724a
19.
A. M. Knepp, G. Meloni, L. E. Jusinski, C. A. Taatjes, C. Cavallotti, and S. J. Klippenstein, Phys. Chem. Chem. Phys. 9, 4315 (2007).
http://dx.doi.org/10.1039/b705934e
20.
A. Bossolasco, E. P. Farago, C. Schoemaecker, and C. Fittschen, Chem. Phys. Lett. 593, 7 (2014).
http://dx.doi.org/10.1016/j.cplett.2013.12.052
21.
A. E. Parker, C. Jain, C. Schoemaecker, P. Szriftgiser, O. Votava, and C. Fittschen, Appl. Phys. B 103, 725 (2011).
http://dx.doi.org/10.1007/s00340-010-4225-1
22.
M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, J. Chem. Soc., Faraday Trans. 94, 337 (1998).
http://dx.doi.org/10.1039/a707686j
23.
T. M. Hard, R. J. O’Brien, C. Y. Chan, and A. A. Mehrabzadeh, Environ. Sci. Technol. 18, 768 (1984).
http://dx.doi.org/10.1021/es00128a009
24.
D. Stone, L. K. Whalley, and D. E. Heard, Chem. Soc. Rev. 41, 6348 (2012).
http://dx.doi.org/10.1039/c2cs35140d
25.
D. J. Creasey, P. A. Halford-Maw, D. E. Heard, M. J. Pilling, and B. J. Whitaker, J. Chem. Soc., Faraday Trans. 93, 2907 (1997).
http://dx.doi.org/10.1039/a701469d
26.
D. Tan, I. Faloona, J. B. Simpas, W. Brune, J. Olson, J. Crawford, M. Avery, G. Sachse, S. Vay, S. Sandholm, H. W. Guan, T. Vaughn, J. Mastromarino, B. Heikes, J. Snow, J. Podolske, and H. Singh, J. Geophys. Res.: Atmos. 106, 32667, doi:10.1029/2001JD900002 (2001).
http://dx.doi.org/10.1029/2001JD900002
27.
F. Holland, M. Hessling, and A. Hofzumahaus, J. Atmos. Sci. 52, 3393 (1995).
http://dx.doi.org/10.1175/1520-0469(1995)052<3393:ISMOTO>2.0.CO;2
28.
M. Martinez, H. Harder, D. Kubistin, M. Rudolf, H. Bozem, G. Eerdekens, H. Fischer, T. Klupfel, C. Gurk, R. Konigstedt, U. Parchatka, C. L. Schiller, A. Stickler, J. Williams, and J. Lelieveld, Atmos. Chem. Phys. 10, 3759 (2010).
http://dx.doi.org/10.5194/acp-10-3759-2010
29.
S. Dusanter, D. Vimal, and P. S. Stevens, Atmos. Chem. Phys. 8, 321 (2008).
http://dx.doi.org/10.5194/acp-8-321-2008
30.
Y. Kanaya and H. Akimoto, Chem. Rec. 2, 199 (2002).
http://dx.doi.org/10.1002/tcr.10019
31.
D. Amedro, K. Miyazaki, A. Parker, C. Schoemaecker, and C. Fittschen, J. Environ. Sci. 24, 78 (2012).
http://dx.doi.org/10.1016/S1001-0742(11)60723-7
32.
Y. Sadanaga, A. Yoshino, K. Shungo, and K. Yoshizumi, Environ. Sci. Technol. 39, 8847 (2005).
http://dx.doi.org/10.1021/es049457p
33.
S. Lou, F. Holland, F. Rohrer, K. Lu, B. Bohn, T. Brauers, C. C. Chang, H. Fuchs, R. Haseler, K. Kita, Y. Kondo, X. Li, M. Shao, L. Zeng, A. Wahner, Y. Zhang, W. Wang, and A. Hofzumahaus, Atmos. Chem. Phys. 10, 11243 (2010).
http://dx.doi.org/10.5194/acp-10-11243-2010
34.
K. Lu, F. Rohrer, F. Holland, H. Fuchs, B. Bohn, T. Brauers, C. C. Chang, R. Haeseler, M. Hu, K. Kita, Y. Kondo, X. Li, S. Lou, S. Nehr, M. Shao, L. Zeng, A. Wahner, Y. Zhang, and A. Hofzumahaus, Atmos. Chem. Phys. 12, 1541 (2012).
http://dx.doi.org/10.5194/acp-12-1541-2012
35.
K. D. Lu, A. Hofzumahaus, F. Holland, B. Bohn, T. Brauers, H. Fuchs, M. Hu, R. Haseler, K. Kita, Y. Kondo, X. Li, S. R. Lou, A. Oebel, M. Shao, L. M. Zeng, A. Wahner, T. Zhu, Y. H. Zhang, and F. Rohrer, Atmos. Chem. Phys. 13, 1057 (2013).
http://dx.doi.org/10.5194/acp-13-1057-2013
36.
A. E. Parker, D. Amedro, C. Schoemaecker, and C. Fittschen, Environ. Eng. Manage. J. 10, 107 (2011).
37.
L. K. Whalley, D. Stone, R. Dunmore, J. F. Hamilton, J. Hopkins, J. D. Lee, B. Bandy, and D. E. Heard, Atmos. Chem. Phys. 16, 2109 (2016).
http://dx.doi.org/10.5194/acp-16-2109-2016
38.
D. Stone, L. K. Whalley, T. Ingham, P. M. Edwards, D. Cryer, C. Brumby, P. W. Seakins, and D. E. Heard, Atmos. Meas. Tech. Discuss. (published online).
http://dx.doi.org/10.5194/amt-2016-51
39.
T. R. Shirley, W. H. Brune, X. Ren, J. Mao, R. Lesher, B. Cardenas, R. Volkamer, L. T. Molina, M. J. Molina, B. Lamb, E. Velasco, T. Jobson, and M. Alexander, Atmos. Chem. Phys. 6, 2753 (2006).
http://dx.doi.org/10.5194/acp-6-2753-2006
40.
V. G. C. Dolgorouky, R. Sarda-Esteve, V. Sinha, J. Williams, N. Marchand, S. Sauvage, L. Poulain, J. Sciare, and B. Bonsang, Atmos. Chem. Phys. 12, 9593 (2012).
http://dx.doi.org/10.5194/acp-12-9593-2012
41.
C. Y. Chan, T. M. Hard, A. A. Mehrabzadeh, L. A. George, and R. J. O’Brien, J. Geophys. Res. 95, 18569, doi:10.1029/JD095iD11p18569 (1990).
http://dx.doi.org/10.1029/JD095iD11p18569
42.
P. S. Stevens, J. H. Mather, and W. H. Brune, J. Geophys. Res.: Atmos. 99, 3543, doi:10.1029/93JD03342 (1994).
http://dx.doi.org/10.1029/93JD03342
43.
S. A. Carr, T. J. Still, M. A. Blitz, A. J. Eskola, M. J. Pilling, P. W. Seakins, R. J. Shannon, B. Wang, and S. H. Robertson, J. Phys. Chem. A 117, 11142 (2013).
http://dx.doi.org/10.1021/jp4070278
44.
A. J. Eskola, S. A. Carr, R. J. Shannon, B. Wang, M. A. Blitz, M. J. Pilling, P. W. Seakins, and S. H. Robertson, J. Phys. Chem. A 118, 6773 (2014).
http://dx.doi.org/10.1021/jp505422e
45.
R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, Atmos. Chem. Phys. 6, 3625 (2006).
http://dx.doi.org/10.5194/acp-6-3625-2006
46.
See supplementary material at http://dx.doi.org/10.1063/1.4950906 for further details of kinetic measurements of reactions of OH with methane and isoprene as a function of the probe distance.[Supplementary Material]
47.
G. L. Vaghjiani and A. R. Ravishankara, Nature 350, 406 (1991).
http://dx.doi.org/10.1038/350406a0
48.
A. Bonard, V. Daele, J. L. Delfau, and C. Vovelle, J. Phys. Chem. A 106, 4384 (2002).
http://dx.doi.org/10.1021/jp012425t
49.
M. G. Bryukov, V. D. Knyazev, S. M. Lomnicki, C. A. McFerrin, and B. Dellinger, J. Phys. Chem. A 108, 10464 (2004).
http://dx.doi.org/10.1021/jp047340h
50.
J. R. Dunlop and F. P. Tully, J. Phys. Chem. 97, 11148 (1993).
http://dx.doi.org/10.1021/j100145a003
51.
D. L. Baulch, C. T. Bowman, C. J. Cobos, R. A. Cox, T. Just, J. A. Kerr, M. J. Pilling, D. Stocker, J. Troe, W. Tsang, R. W. Walker, and J. Warnatz, J. Phys. Chem. Ref. Data 34, 757 (2005).
http://dx.doi.org/10.1063/1.1748524
52.
M. T. Baeza-Romero, M. A. Blitz, A. Goddard, and P. W. Seakins, Int. J. Chem. Kinet. 44, 532 (2012).
http://dx.doi.org/10.1002/kin.20620
53.
D. J. Creasey, D. E. Heard, M. J. Pilling, B. J. Whitaker, M. Berzins, and R. Fairlie, Appl. Phys. B: Lasers Opt. 65, 375 (1997).
http://dx.doi.org/10.1007/s003400050285
54.
J. Luque and D. R. Crosley, LIFBASE: Database and Spectral Simulation Program (SRI International, 1995).
55.
C. A. Taatjes, Int. J. Chem. Kinet. 39, 565 (2007).
http://dx.doi.org/10.1002/kin.20262
56.
Y. Sadanaga, A. Yoshino, K. Watanabe, A. Yoshioka, Y. Wakazono, Y. Kanaya, and Y. Kajii, Rev. Sci. Instrum. 75, 2648 (2004).
http://dx.doi.org/10.1063/1.1775311
57.
D. K. Manley, A. McIlroy, and C. A. Taatjes, Phys. Today 61(11), 47 (2008).
http://dx.doi.org/10.1063/1.3027991
58.
T. A. Semelsberger, R. L. Borup, and H. L. Greene, J. Power Sources 156, 497 (2006).
http://dx.doi.org/10.1016/j.jpowsour.2005.05.082
59.
H. Guo, W. Sun, F. M. Haas, T. Farouk, F. L. Dryer, and Y. Ju, Proc. Combust. Inst. 34, 573 (2013).
http://dx.doi.org/10.1016/j.proci.2012.05.056
60.
F. Herrmann, B. Jochim, P. Oswald, L. Cai, H. Pitsch, and K. Kohse-Hoeinghaus, Combust. Flame 161, 384 (2014).
http://dx.doi.org/10.1016/j.combustflame.2013.09.014
61.
N. Kurimoto, B. Brumfield, X. Yang, T. Wada, P. Dievart, G. Wysocki, and Y. Ju, Proc. Combust. Inst. 35, 457 (2015).
http://dx.doi.org/10.1016/j.proci.2014.05.120
62.
K. Moshammer, A. W. Jasper, D. M. Popolan-Vaida, A. Lucassen, P. Dievarti, H. Selim, A. J. Eskola, C. A. Taatjes, S. R. Leone, S. M. Sarathy, Y. Ju, P. Dagaut, K. Kohse-Hoeinghaus, and N. Hansen, J. Phys. Chem. A 119, 7361 (2015).
http://dx.doi.org/10.1021/acs.jpca.5b00101
63.
T. Ngoc Linh Le, M. Djehiche, C. D. Jain, P. Dagaut, and G. Dayma, Fuel 158, 248 (2015).
http://dx.doi.org/10.1016/j.fuel.2015.05.042
64.
A. Rodriguez, O. Frottier, O. Herbinet, R. Fournet, R. Bounaceur, C. Fittschen, and F. Battin-Leclerc, J. Phys. Chem. A 119, 7905 (2015).
http://dx.doi.org/10.1021/acs.jpca.5b01939
http://aip.metastore.ingenta.com/content/aip/journal/rsi/87/5/10.1063/1.4950906
Loading
/content/aip/journal/rsi/87/5/10.1063/1.4950906
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/rsi/87/5/10.1063/1.4950906
2016-05-25
2016-09-27

Abstract

Fast radical reactions are central to the chemistry of planetary atmospheres and combustion systems. Laser-induced fluorescence is a highly sensitive and selective technique that can be used to monitor a number of radical species in kinetics experiments, but is typically limited to low pressure systems owing to quenching of fluorescent states at higher pressures. The design and characterisation of an instrument are reported using laser-induced fluorescence detection to monitor fast radical kinetics (up to 25 000 s−1) at high temperatures and pressures by sampling from a high pressure reaction region to a low pressure detection region. Kinetics have been characterised at temperatures reaching 740 K and pressures up to 2 atm, with expected maximum operational conditions of up to ∼900 K and ∼5 atm. The distance between the point of sampling from the high pressure region and the point of probing within the low pressure region is critical to the measurement of fast kinetics. The instrumentation described in this work can be applied to the measurement of kinetics relevant to atmospheric and combustion chemistry.

Loading

Full text loading...

/deliver/fulltext/aip/journal/rsi/87/5/1.4950906.html;jsessionid=YZmEeb1VPFbwOH1ha8l9X7cZ.x-aip-live-02?itemId=/content/aip/journal/rsi/87/5/10.1063/1.4950906&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/rsi
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=rsi.aip.org/87/5/10.1063/1.4950906&pageURL=http://scitation.aip.org/content/aip/journal/rsi/87/5/10.1063/1.4950906'
Right1,Right2,Right3,