Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
M. A. Blitz and P. W. Seakins, Chem. Soc. Rev. 41, 6318 (2012).
A. Canosa, F. Goulay, I. R. Sims, and B. R. Rowe, in Low Temperatures and Cold Molecules, edited by I. W. M. Smith (World Scientific, Singapore, 2008), Vol. 55.
I. W. M. Smith, in Annual Review of Astronomy and Astrophysics, edited by S. M. Faber and E. VanDishoeck (Annual Reviews, 2011), Vol. 49, p. 29.
J. Zador, C. A. Taatjes, and R. X. Fernandes, Prog. Energy Combust. Sci. 37, 371 (2011).
P. W. Seakins, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 103, 173 (2007).
D. E. Heard and M. J. Pilling, Chem. Rev. 103, 5163 (2003).
L. D’Ottone, D. Bauer, P. Campuzano-Jost, M. Fardy, and A. J. Hynes, Faraday Discuss. 130, 111 (2005).
K. A. Holbrook, M. J. Pilling, and S. H. Robertson, Unimolecular Reactions (Wiley, Chichester, 1996).
P. W. Seakins, S. H. Robertson, M. J. Pilling, D. M. Wardlaw, F. L. Nesbitt, R. P. Thorn, W. A. Payne, and L. J. Stief, J. Phys. Chem. 101, 9974 (1997).
I. W. M. Smith, J. Chem. Soc., Faraday Trans. 93, 3741 (1997).
M. A. Blitz, N. J. B. Green, R. J. Shannon, M. J. Pilling, P. W. Seakins, C. M. Western, and S. H. Robertson, J. Phys. Chem. A 119, 7668 (2015).
M. J. Pilling, S. H. Robertson, and P. W. Seakins, J. Chem. Soc., Faraday Trans. 91, 4179 (1995).
C. K. Westbrook, W. J. Pitz, and H. J. Curran, in HCCI and CAI Engines for the Automotive Industry, edited by H. Zhao (CRC Press, Boca Raton, 2007).
M. F. Yao, Z. L. Zheng, and H. F. Liu, Prog. Energy Combust. Sci. 35, 398 (2009).
R. Forster, M. Frost, D. Fulle, H. F. Hamann, H. Hippler, A. Schlepegrell, and J. Troe, J. Chem. Phys. 103, 2949 (1995).
R. V. Ravikrishna, C. S. Cooper, and N. M. Laurendeau, Combust. Flame 117, 810 (1999).
K. Kohse-Hoinghaus, W. Perc, and T. Just, Ber. der Bunsen-Ges.-Phys. Chem. Chem. Phys. 87, 1052 (1983).
C. Bansch, J. Kiecherer, M. Szori, and M. Olzmann, J. Phys. Chem. A 117, 8343 (2013).
A. M. Knepp, G. Meloni, L. E. Jusinski, C. A. Taatjes, C. Cavallotti, and S. J. Klippenstein, Phys. Chem. Chem. Phys. 9, 4315 (2007).
A. Bossolasco, E. P. Farago, C. Schoemaecker, and C. Fittschen, Chem. Phys. Lett. 593, 7 (2014).
A. E. Parker, C. Jain, C. Schoemaecker, P. Szriftgiser, O. Votava, and C. Fittschen, Appl. Phys. B 103, 725 (2011).
M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, J. Chem. Soc., Faraday Trans. 94, 337 (1998).
T. M. Hard, R. J. O’Brien, C. Y. Chan, and A. A. Mehrabzadeh, Environ. Sci. Technol. 18, 768 (1984).
D. Stone, L. K. Whalley, and D. E. Heard, Chem. Soc. Rev. 41, 6348 (2012).
D. J. Creasey, P. A. Halford-Maw, D. E. Heard, M. J. Pilling, and B. J. Whitaker, J. Chem. Soc., Faraday Trans. 93, 2907 (1997).
D. Tan, I. Faloona, J. B. Simpas, W. Brune, J. Olson, J. Crawford, M. Avery, G. Sachse, S. Vay, S. Sandholm, H. W. Guan, T. Vaughn, J. Mastromarino, B. Heikes, J. Snow, J. Podolske, and H. Singh, J. Geophys. Res.: Atmos. 106, 32667, doi:10.1029/2001JD900002 (2001).
F. Holland, M. Hessling, and A. Hofzumahaus, J. Atmos. Sci. 52, 3393 (1995).<3393:ISMOTO>2.0.CO;2
M. Martinez, H. Harder, D. Kubistin, M. Rudolf, H. Bozem, G. Eerdekens, H. Fischer, T. Klupfel, C. Gurk, R. Konigstedt, U. Parchatka, C. L. Schiller, A. Stickler, J. Williams, and J. Lelieveld, Atmos. Chem. Phys. 10, 3759 (2010).
S. Dusanter, D. Vimal, and P. S. Stevens, Atmos. Chem. Phys. 8, 321 (2008).
Y. Kanaya and H. Akimoto, Chem. Rec. 2, 199 (2002).
D. Amedro, K. Miyazaki, A. Parker, C. Schoemaecker, and C. Fittschen, J. Environ. Sci. 24, 78 (2012).
Y. Sadanaga, A. Yoshino, K. Shungo, and K. Yoshizumi, Environ. Sci. Technol. 39, 8847 (2005).
S. Lou, F. Holland, F. Rohrer, K. Lu, B. Bohn, T. Brauers, C. C. Chang, H. Fuchs, R. Haseler, K. Kita, Y. Kondo, X. Li, M. Shao, L. Zeng, A. Wahner, Y. Zhang, W. Wang, and A. Hofzumahaus, Atmos. Chem. Phys. 10, 11243 (2010).
K. Lu, F. Rohrer, F. Holland, H. Fuchs, B. Bohn, T. Brauers, C. C. Chang, R. Haeseler, M. Hu, K. Kita, Y. Kondo, X. Li, S. Lou, S. Nehr, M. Shao, L. Zeng, A. Wahner, Y. Zhang, and A. Hofzumahaus, Atmos. Chem. Phys. 12, 1541 (2012).
K. D. Lu, A. Hofzumahaus, F. Holland, B. Bohn, T. Brauers, H. Fuchs, M. Hu, R. Haseler, K. Kita, Y. Kondo, X. Li, S. R. Lou, A. Oebel, M. Shao, L. M. Zeng, A. Wahner, T. Zhu, Y. H. Zhang, and F. Rohrer, Atmos. Chem. Phys. 13, 1057 (2013).
A. E. Parker, D. Amedro, C. Schoemaecker, and C. Fittschen, Environ. Eng. Manage. J. 10, 107 (2011).
L. K. Whalley, D. Stone, R. Dunmore, J. F. Hamilton, J. Hopkins, J. D. Lee, B. Bandy, and D. E. Heard, Atmos. Chem. Phys. 16, 2109 (2016).
D. Stone, L. K. Whalley, T. Ingham, P. M. Edwards, D. Cryer, C. Brumby, P. W. Seakins, and D. E. Heard, Atmos. Meas. Tech. Discuss. (published online).
T. R. Shirley, W. H. Brune, X. Ren, J. Mao, R. Lesher, B. Cardenas, R. Volkamer, L. T. Molina, M. J. Molina, B. Lamb, E. Velasco, T. Jobson, and M. Alexander, Atmos. Chem. Phys. 6, 2753 (2006).
V. G. C. Dolgorouky, R. Sarda-Esteve, V. Sinha, J. Williams, N. Marchand, S. Sauvage, L. Poulain, J. Sciare, and B. Bonsang, Atmos. Chem. Phys. 12, 9593 (2012).
C. Y. Chan, T. M. Hard, A. A. Mehrabzadeh, L. A. George, and R. J. O’Brien, J. Geophys. Res. 95, 18569, doi:10.1029/JD095iD11p18569 (1990).
P. S. Stevens, J. H. Mather, and W. H. Brune, J. Geophys. Res.: Atmos. 99, 3543, doi:10.1029/93JD03342 (1994).
S. A. Carr, T. J. Still, M. A. Blitz, A. J. Eskola, M. J. Pilling, P. W. Seakins, R. J. Shannon, B. Wang, and S. H. Robertson, J. Phys. Chem. A 117, 11142 (2013).
A. J. Eskola, S. A. Carr, R. J. Shannon, B. Wang, M. A. Blitz, M. J. Pilling, P. W. Seakins, and S. H. Robertson, J. Phys. Chem. A 118, 6773 (2014).
R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, Atmos. Chem. Phys. 6, 3625 (2006).
See supplementary material at for further details of kinetic measurements of reactions of OH with methane and isoprene as a function of the probe distance.[Supplementary Material]
G. L. Vaghjiani and A. R. Ravishankara, Nature 350, 406 (1991).
A. Bonard, V. Daele, J. L. Delfau, and C. Vovelle, J. Phys. Chem. A 106, 4384 (2002).
M. G. Bryukov, V. D. Knyazev, S. M. Lomnicki, C. A. McFerrin, and B. Dellinger, J. Phys. Chem. A 108, 10464 (2004).
J. R. Dunlop and F. P. Tully, J. Phys. Chem. 97, 11148 (1993).
D. L. Baulch, C. T. Bowman, C. J. Cobos, R. A. Cox, T. Just, J. A. Kerr, M. J. Pilling, D. Stocker, J. Troe, W. Tsang, R. W. Walker, and J. Warnatz, J. Phys. Chem. Ref. Data 34, 757 (2005).
M. T. Baeza-Romero, M. A. Blitz, A. Goddard, and P. W. Seakins, Int. J. Chem. Kinet. 44, 532 (2012).
D. J. Creasey, D. E. Heard, M. J. Pilling, B. J. Whitaker, M. Berzins, and R. Fairlie, Appl. Phys. B: Lasers Opt. 65, 375 (1997).
J. Luque and D. R. Crosley, LIFBASE: Database and Spectral Simulation Program (SRI International, 1995).
C. A. Taatjes, Int. J. Chem. Kinet. 39, 565 (2007).
Y. Sadanaga, A. Yoshino, K. Watanabe, A. Yoshioka, Y. Wakazono, Y. Kanaya, and Y. Kajii, Rev. Sci. Instrum. 75, 2648 (2004).
D. K. Manley, A. McIlroy, and C. A. Taatjes, Phys. Today 61(11), 47 (2008).
T. A. Semelsberger, R. L. Borup, and H. L. Greene, J. Power Sources 156, 497 (2006).
H. Guo, W. Sun, F. M. Haas, T. Farouk, F. L. Dryer, and Y. Ju, Proc. Combust. Inst. 34, 573 (2013).
F. Herrmann, B. Jochim, P. Oswald, L. Cai, H. Pitsch, and K. Kohse-Hoeinghaus, Combust. Flame 161, 384 (2014).
N. Kurimoto, B. Brumfield, X. Yang, T. Wada, P. Dievart, G. Wysocki, and Y. Ju, Proc. Combust. Inst. 35, 457 (2015).
K. Moshammer, A. W. Jasper, D. M. Popolan-Vaida, A. Lucassen, P. Dievarti, H. Selim, A. J. Eskola, C. A. Taatjes, S. R. Leone, S. M. Sarathy, Y. Ju, P. Dagaut, K. Kohse-Hoeinghaus, and N. Hansen, J. Phys. Chem. A 119, 7361 (2015).
T. Ngoc Linh Le, M. Djehiche, C. D. Jain, P. Dagaut, and G. Dayma, Fuel 158, 248 (2015).
A. Rodriguez, O. Frottier, O. Herbinet, R. Fournet, R. Bounaceur, C. Fittschen, and F. Battin-Leclerc, J. Phys. Chem. A 119, 7905 (2015).

Data & Media loading...


Article metrics loading...



Fast radical reactions are central to the chemistry of planetary atmospheres and combustion systems. Laser-induced fluorescence is a highly sensitive and selective technique that can be used to monitor a number of radical species in kinetics experiments, but is typically limited to low pressure systems owing to quenching of fluorescent states at higher pressures. The design and characterisation of an instrument are reported using laser-induced fluorescence detection to monitor fast radical kinetics (up to 25 000 s−1) at high temperatures and pressures by sampling from a high pressure reaction region to a low pressure detection region. Kinetics have been characterised at temperatures reaching 740 K and pressures up to 2 atm, with expected maximum operational conditions of up to ∼900 K and ∼5 atm. The distance between the point of sampling from the high pressure region and the point of probing within the low pressure region is critical to the measurement of fast kinetics. The instrumentation described in this work can be applied to the measurement of kinetics relevant to atmospheric and combustion chemistry.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd